The Objective Caml system
release 3.06

Documentation and user’s manual

Xavier Leroy
(with Damien Doligez, Jacques Garrigue, Didier Rémy and Jérome Vouillon)

August 19, 2002

Copyright (©) 2002 Institut National de Recherche en Informatique et en Automatique

Contents

I An mmtroduction to Objective Caml

IL "I'he core languagqg
LI Basicd e e e e e
1.2 Data Typeg o e e e e e e e e e e e e s e e
Lo bFuncfionsaswvalued L L e e e e e e e e e
4 hecords and variantd L L L e e e e e e e e
IL.5 Imperative Teatures o o e e e e e e e e e e e e e e e e e e e
1.6 EXCEDTIONS o o o e e e e e e e e e e e e e e e e e s e e
IL.7 DYIMDOIIC Processing OI eXPreSSIONT + &« v v v v v v v e e e e e e e e e e e e e e e
L.s Pretty-printing and Pparsiing o v vt b e e e e e
IL.Y otandalone Caml programsg L e e e e e

2 1'he module system

2| SITHCTUTES . . . L L o b v vttt e e e e e e e e e e e e e e e e e e e
2.2 DIFNATUTES . . & v v v v v e s e e
Lo BUNCLOTS L L L L e e e e e e e e e e e e e s
2.4 Functors and type abstraction L L e e
E.0 Modules and separate compilationfo o o0 s

b Objects 1n Caml

b.1 Classes and ODbJeCts o e e e e e e e e e e e e e e
b2 heterence ta selll L L L e e e e e e e e e e
Lo Initializerd oL L L L e e e e e e e e e e e e e
b4 Vartual methods L L e e e e e e e e
b Private methodd L e e e e e e e e
Lo Class itertaced L L e e e e e e e e e
b ___Inherifancd L L e e e e e e e e
b.3 Multiple mnheritancd o e e e e e e e e e e
LY Parameterized classed L L e e e e e e e e e
p.10 Polymorphic methods e e e e
p.l1l USING COErCIONg o o e e e e e e e e e e e e e e e e e e e
b.12 Functional objects e e e e e e e
p.lo Cloning objectd e e e e e e e e e e
b 14 Recursive classed L L L L L L e e e e e e e e e e
pb.lo bimary methods e e e e e e

11
11
12
13
14
16
18
19
20
23

25
25
26
27
29
31

a.2 Polymorphic varianty e e e e e e e

p__Advanced examples with classes and moduleg
p.1l bxtended example: bank accounty oL o oL oL
p.2 olmple modules as classeq oL Lo oL L Lo
b.3 The subject/observer patternlo

Il "I'he Objective Caml languagqg

b 1he Objective Caml language
bl Lexical conventlons L L L e e e e e e e e e e e e e e e
B2 Valued e e
B3 INamed e
b.4 LType exXpressiony L o e e e e e e e e e e e e e e e e e e
bo Constants L L e e e e e e e e e e e e e e s e
B —Paffernd e
b./ HXPressiony e e e e e e e e e e e e e e e e
b.3 Type and exception dennitlony v v v v v v v v e e e e e e e e e e e e
BEO__TIassed o e e
p.10 Module types (module specifications)o
b.11 Module expressions (module implementations)
p.12 Compilation units e e e e e e e e e e e e e

[Language extensionsg
Ir.1 dtreams and stream parsery o e e e e e e e e e e e e e e e
(.2 Range patternyg e e e e e e e e e e e e e e
7.3 Assertion checkingl L L e e e e e
(.4 Deterred computatlong ot i e e e e e e e e e e e e e e e
[[5 Local moduled L e e e e
(.0 Grouping 1n integer and foating-pomt literaldo 0oL

11 "I'he Objective Caml tools

B8 Batch compilation (ocamlc)
B.1 Overview oI the compllen] oo e e e e e e e e e e e e e e e
...
B.o Modules and the file system] Lo e e e e e e e e e
x4 COMMON eITOTS v v v v v v e

61
61
67

71
71
7
83

87

89
89
93
94
97
100
101
104
114
117
123
127
130

131
131
131
131
132
132
132

133

D 'The toplevel system (ocaml)

..................................

p.2 Toplevel directives oL e e e e e e
.o ‘I'he toplevel and the module system

10.2 Optiond. e e e e
L0.5 Dynamic loading of shared libraried

L4 Common errord

11 Native-code compilation (ocamlopt)

ILL. 1 Overview of the compiler]

Ll 3 Common errord

12 Lexer and parser generators (ocamllex, ocamlyacc)

21 Overview of ocamllex

IL2.2 Syntax of lexer definitiony

2.0 Overview of ocamlyvacg
LZ2.4 Syntax of grammar definitlonygo e e e e
12,0 Optiong. e e e e e e e e e e e
LZ2.0 A complete examplg.o Lo oo

U2/ Common errord

13 Dependency generator (ocamldep)

Lo.2 A typical Makenildo

14 The browser/editor (ocamlbrowser)

4 1 Invocation

IL4.5 Module browsinglo

| USAZE e e e e e e e e e e e e e e e e e
ILo.2 Syntax ol documentation comments
ILo.0 Custom generatory0 e e e e e e e e

Lo.4 Adding command line optiony« . o oo

145
147
148
149
150
150
151

153
153
154
155
156

159
159
160
164
164

167
167
168
170
170
173
173
175

177
177
178

181
181
182
182
183
183

16 The debugger (ocamldebug) 203
[6.T Compiling for debugging o o v i e e e e e e 203
062 Tnvocafionl e e e e e e e e 203
63 Commandd e e 204
[6.4 Execufing a programl e e e e e e e 205
[6.5 Breakpoinfd e e 208
66 Thecallsfackl e e e e 208
[6.7 Examining variable value§o 209
[6.8 Confrolling the debuggen e 210
69 NMiscellaneous commandd L e 213
[6.10 Running the debugger under Emacg 213

17 Profiling (ocamlprof’) 217
[71 Compiling for profiling 217
[7.2 Prohling an execution« o i 218

7.3 Prinfing profiling informafion 218
7.4 Time profiling e e s 218

I8 Interfacing C with Objective Caml 221
8.1 Overview and compilafion informafion 221
[8.2 The value Typd« o e e e e e e e 227
8.3 Representation of Caml data typed 228
[8.4 Operations on valued e 230
[85 Living in harmony with the garbage collectol 233
[8.6 A complefe exampld e 237
I8.7 Advanced topic: callbacks from Cto Caml] 239
8.8~ Advanced example with callbackd 243
[8.9 Advanced fopic: custom blockdo 244
[18.10 Building mixed C/Caml libraries: ocamlmklil 248

[V The Objective Caml Tibrary] 251

M9 The core library] 253
9.1 Built-in fypes and predefined excepfiond 253
(9.2 Module Pervasives : The inifially opened module] 255

B0 The standard Tibrary| 273
PUO.T Module Arg : Parsing of command [In€ arguments]« . v v v v v v v v v .. 275
P0.2" Module Array : Array operations] oo 277
P03~ Module Buffer : Extensible string buffers] 280
R0.4 Module Callback : Registering Caml values with the C runtime] 281
P0.5 Module Char : Characfer operations] 281
PU.6 Module Complex : Complex numbers] 282
PO.7 Module Digest : MDJ) message digest] 284

PUO.8~ Module FiTename : Operafions on file names] 285

£0.Y

Module Format : Pretty printing)

R0.10

Module Gec : Memory management control and statistics; nnalised values)

gO.11

Module Genlex : A generic lexical analyzer)

2012

Maodule Hashtbl - Hash tables and hash twnetions!

E£0.15

Module Int32 : o2-bit 1ntegers) L e e

£0.14

Module Int64 : 64-bit 1ntegers) e e e

EU.15

Module Lazy : Delerred computations) oo

E£U.16

Module Lexing : 'I'he run-time library 1or lexers generated by ocamllex)

LU 17

Module List : Liast operations)o

E0. 18

Module Map : Association tables over ordered types).

E£0.19

Module Marshal : Marshaling ot data structures)

£0.20

Module Nativeint : Processor-native mtegers).

p0.21

Module Oo : Operations on objectd

EU.22

Module Parsing : 'I'he run-time library for parsers generated by ocamlyacc)

£0.25

Module Printexc : Facilities for printing exceptions)

£0.24

Module Printf ;. Formatted output functions« . .« . o ...

£0.25

Module (ueue : First-in orst-out queuesyo 0o

20.26

Module Random : Pseudo-random number generator (PRNG))

£0.27

Module Scanf : Formatted input functions)

E£U.25

Module bSet : dSets over ordered types]o .o

E£0.29 Module Sort : dorting and merging lists)

20 a0

Module Stack - l.ast-in first-out stacks|

R0.32

Module Stream : Streams and parsers]o o0 e e e

£0.55

Module String : String operations)o

K£0.04

Module Sys : dSystem 1nterrace) e e e e e e e e e e e

£0.50

Module Weak : Arrays ol weak pointers and hash tables of weak pointers)

21

1T'he unix library: Unix system callg

gl.1

Module Unix : Interface to the Unmix system

212

Module Unixl.abels: [abelized version of the intertacd

ez

1'he num library: arbitrary-precision rational arithmetiqg

gz.1

Module Num : Operation on arbitrary-precision numbers)

g2.2

Module Big_int : Operations on arbitrary-precision integers)

g2.5

Module Arith_status : Flags that control rational arithmeticf

23

1he str library: regular expressions and String processing]

Ego.1

Module Str : Regular expressions and high-level string processing|

21

'I'he threads library|

4.1 Module Thread : lLightweight threads tor Posix 1003.1c and Wins2)
| Module Mintex - Locks tor mntual exelusion!
4.0 Module Condition : Condition variables to synchronize between threads).
k4.4 Module Event : First-class synchronous communication)
E4.0 Module ThreadUnix : |’ hread-compatible system calls]

355
355
385

389
389
393
396

397
397

ko 1'he graphics library|

go.l Module Graphics : Machine-independent graphics primitives)

26 1he dbm library:

access to NDBM databaseg

k7 1he dynlink library: dynamic loading and linking of object fileg

7.1 Module Dynlink : Dynamic loading of bytecode object filesy

28 T'he LablTk library: I'cl/'T'k GUI interface

8.1 Module Tk : Basic tunctions and types for Labl'lk

29 1'he bigarray library|

Y.l Module Bigarray : Large, multi-dimensional, numerical arrays)

Y.2 big arrays in the Caml-C mterfacd

V. Appendix
Index to the library]
Index of keywords

411
412

421
421

423
423

425
426

433
434
449

Foreword

This manual documents the release 3.06 of the Objective Caml system. It is organized as follows.
e Part [, “An introduction to Objective Caml”, gives an overview of the language.
e Part [, “The Objective Caml language”, is the reference description of the language.

e Part [Il, “The Objective Caml tools”, documents the compilers, toplevel system, and pro-
gramming utilities.

o Part [V, “The Objective Caml library”, describes the modules provided in the standard
library.

e Part [V], “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

Objective Caml runs on several operating systems. The parts of this manual that are specific to
one operating system are presented as shown below:

MacOS:
This is material specific to MacOS 7, 8, 9. (For MacOS X, see “Unix”.)

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (95, 98, ME, NT, 2000).

License

The Objective Caml system is copyright (©) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Institut
National de Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownership
rights to the Objective Caml system.

The Objective Caml system is open source and can be freely redistributed. See the file LICENSE
in the distribution for licensing information.

8 Foreword

The present documentation is copyright (¢©) 2002 Institut National de Recherche en Informa-
tique et en Automatique (INRIA). The Objective Caml documentation and user’s manual may be
reproduced and distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

e Any translation or derivative work of the Objective Caml documentation and user’s manual
must be approved by the authors in writing before distribution.

e If you distribute the Objective Caml documentation and user’s manual in part, instructions
for obtaining the complete version of this manual must be included, and a means for obtaining
a complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete Objective Caml distribution can be accessed via the Web site http://caml.inria.fr/.
This Web site contains a lot of additional information on Objective Caml.

Part 1

An introduction to Objective Caml

Chapter 1

The core language

This part of the manual is a tutorial introduction to the Objective Caml language. A good famil-
iarity with programming in a conventional languages (say, Pascal or C) is assumed, but no prior
exposure to functional languages is required. The present chapter introduces the core language.
Chapter B deals with the object-oriented features, and chapter B with the module system.

1.1 Basics

For this overview of Caml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types Caml phrases, terminated by ;;, in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

142%3;;

- : int =7

let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265359

let square x = X *. X;;
val square : float -> float = <fun>

square(sin pi) +. square(cos pi);;
- : float = 1.

The Caml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

1.0 x 2;;
This expression has type float but is here used with type int

11

12

Recursive functions are defined with the let rec binding:

let rec fib n =
if n < 2 then 1 else fib(n-1) + fib(n-2);;
val fib : int -> int = <fun>

fib 10;;
- : int = 89

1.2 Data types

In addition to integers and floating-point numbers, Caml offers the usual basic data types: booleans,
characters, and character strings.

(1 < 2) = false;;

- : bool = false
#a’;;
- : char = ’a’

"Hello world";;
: string = "Hello world"

Predefined data structures include tuples, arrays, and lists. General mechanisms for defining
your own data structures are also provided. They will be covered in more details later; for now, we
concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated
elements, or built from the empty list [1 (pronounce “nil”) by adding elements in front using the
:: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other Caml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in Caml. Similarly, there is no explicit
handling of pointers: the Caml compiler silently introduces pointers where necessary.

As with most Caml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have the exact same shape as list expressions, with identifier representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort lst =

match 1st with

0 -> [

| head :: tail —-> insert head (sort tail)

and insert elt 1lst =

match 1lst with

[0 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail

Chapter 1. The core language 13

%55
val sort : ’a list -> ’a list = <fun>
val insert : ’a -> ’a list -> ’a list = <fun>

sort 1;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, ’a list -> ’a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type ’a is a type variable, and stands for any
given type. The reason why sort can apply to lists of any type is that the comparisons (=, <=,
etc.) are polymorphic in Caml: they operate between any two values of the same type. This makes
sort itself polymorphic over all list types.

sort [6;2;5;3];;

- : int list = [2; 3; 5; 6]

sort [3.14; 2.718];;

- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in Caml
to modify in-place a list once it is built: we say that lists are immutable data structures. Most
Caml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

1.3 Functions as values

Caml is a functional language: functions in the full mathematical sense are supported and can be
passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f(x +. dx) -. f(x)) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin’ = deriv sin le-6;;

val sin’ : float -> float = <fun>

sin’ pi;;

- : float = -1.00000000014

Even function composition is definable:

let compose f g = function x -> f(g(x));;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
let cos2 = compose square cos;;

val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard Caml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

14

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let recmap £ 1 =

match 1 with

0 ->10

| hd :: t1 -> f hd :: map £ tl;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denum: int};;
type ratio = { num : int; denum : int; }

let add_ratio rl r2 =
{num = ri1.num * r2.denum + r2.num * rl.denum;

denum = rl.denum * r2.denum};;
val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denum=3} {num=2; denum=5};;
- : ratio = {num = 11; denum = 15}

The declaration of a variant type lists all possible shapes for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

Chapter 1. The core language 15

let add_num nl n2 =
match (nl, n2) with

(Int i1, Int i2) —>

(* Check for overflow of integer addition *)

if sign_int il = sign_int i2 && sign_int(il + i2) <> sign_int il
then Float(float il +. float i2)

else Int(il + i2)

| (Int i1, Float f2) -> Float(float il +. f2)

| (Float f1, Int i2) -> Float(f1 +. float i2)

| (Float f1, Float f2) -> Float(f1 +. f2)

| (Error, _) —> Error

|

(_, Error) -> Error;;
val add_num : number -> number -> number = <fun>

add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type ’a btree = Empty | Node of ’a * ’a btree * ’a btree;;
type ’a btree = Empty | Node of ’a * ’a btree * ’a btree

This definition reads as follow: a binary tree containing values of type ’a (an arbitrary type) is
either empty, or is a node containing one value of type ’a and two subtrees containing also values
of type ’a, that is, two ’a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =
match btree with
Empty -> false
| Node(y, left, right) ->
if x = y then true else

if x < y then member x left else member x right;;
val member : ’a -> ’a btree -> bool = <fun>

#
#
#
#
#
#

let rec insert x btree =

match btree with

Empty -> Node(x, Empty, Empty)

| Node(y, left, right) ->

if x <= y then Node(y, insert x left, right)
#

else Node(y, left, insert x right);;
val insert : ’a -> ’a btree -> ’a btree = <fun>

16

1.5 Imperative features

Though all examples so far were written in purely applicative style, Caml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either given in extension between [| and |] brackets, or
allocated and initialized with the Array.create function, then filled up later by assignments. For
instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect vl v2 =

let len = min (Array.length v1) (Array.length v2) in
let res = Array.create len 0.0 in

for i = 0 to len - 1 do
#

#

#

res. (i) <- vi1.(1) +. v2.(1)
done;
res;;
val add_vect : float array -> float array -> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 I]1;;
- : float array = [|4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =
p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}

translate mypoint 1.0 2.0;;
- : unit = O

mypoint;;
- : mutable_point = {x = 1.; y = 2.}

Caml has no built-in notion of variable — identifiers whose current value can be changed by
assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells (or
one-element arrays), with operators ! to fetch the current contents of the reference and := to assign
the contents. Variables can then be emulated by let-binding a reference. For instance, here is an
in-place insertion sort over arrays:

let insertion_sort a =

for i = 1 to Array.length a - 1 do
let val_i = a.(i) in
let j = ref i in

#
#
#
while !j > 0 && val_i < a.(!j - 1) do

Chapter 1. The core language 17

a.(1j) <= a.('j - 1;
joi=13j-1

done;

a.(!'j) <= val_i

done; ;

val insertion_sort : ’a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents = O}

let random () =
current_rand := !current_rand * 25713 + 1345;

lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magic with references: they are implemented as a one-field mutable
record, as follows.

type ’a ref = { mutable contents: ’a };;
type ’a ref = { mutable contents : ’a; }

let (!) r = r.contents;;
val (!) : ’a ref -> ’a = <fun>

let (:=) r newval = r.contents <- newval;;
val (:=) : ’a ref -> ’a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Without user-provided type annotations, this is not allowed, as polymorphism

is only introduced on a global level. However, you can give explicitly polymorphic types to record
fields.

type idref = { mutable id: ’a. ’a -> ’a };;
type idref = { mutable id : ’a. ’a -> ’a; }

let r = {id = fun x —> x};;
val r : idref = {id = <fun>}

let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id

- : int * bool = (1, true)

18

1.6 Exceptions

Caml provides exceptions for signalling and handling exceptional conditions. Exceptions can also be
used as a general-purpose non-local control structure. Exceptions are declared with the exception
construct, and signalled with the raise operator. For instance, the function below for taking the
head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list

let head 1 =
match 1 with

[1 -> raise Empty_list
| hd :: t1l -> hd;;

val head : ’a list -> ’a = <fun>
head [1;2];;

- : int =1

head []1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "omne")];;
- : string = "one"

List.assoc 2 [(0, "zero"); (1, "omne")];;
Exception: Not_found.

Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

name_of_binary_digit O;;
- : string = "zero"

name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part is actually a regular pattern-matching on the exception value. Thus, several
exceptions can be caught by one try...with construct. Also, finalization can be performed by
trapping all exceptions, performing the finalization, then raising again the exception:

Chapter 1. The core language 19

let temporarily_set_reference ref newval funct =
let oldval = !ref in

try

ref := newval;

let res = funct () in

ref := oldval;

res

with x >

ref := oldval;

raise x;;

val temporarily_set_reference : ’a ref -> ’a -> (unit -> ’b) -> ’b = <fun>

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of Caml for
symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

type expression =

Const of float
| Var of string
| Sum of expression * expression (x el + e2 %)
| Diff of expression * expression (x el - e2 %)
|
|

Prod of expression * expression (x el * e2 %)
Quot of expression * expression (* el / e2 x)

H OH H OH OHF H H

’
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =
match exp with

Const ¢ -> ¢

| Var v —>

(try List.assoc v env with Not_found -> raise(Unbound_variable v))
| Sum(f, g) -> eval env f +. eval env g

| Diff(f, g) -> eval env f -. eval env g

20

| Prod(f, g) -> eval env f *. eval env g
| Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

let rec deriv exp dv =

match exp with

Const ¢ -> Const 0.0

| Var v => if v = dv then Const 1.0 else Const 0.0

| Sum(f, g) -> Sum(deriv f dv, deriv g dv)

| Diff(f, g) -> Diff(deriv f dv, deriv g dv)

| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

| Quot(f, g) -> Quot(Diff (Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

#55

val deriv : expression -> string -> expression = <fun>

deriv (Quot(Const 1.0, Var "x")) "x";;

- : expression =

Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Comnst 1.)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing and parsing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence

let print_expr exp =
(x Local function definitions *)
let open_paren prec op_prec =
if prec > op_prec then print_string "(" in
let close_paren prec op_prec =

let rec print prec exp = (* prec is the current precedence *)
match exp with

#
#
#
if prec > op_prec then print_string ")" in
#
#
Const c¢ -> print_float c

Chapter 1. The core language 21

| Var v -> print_string v
| Sum(f, g) —>
open_paren prec O;
print O f; print_string " + "; print 0 g;
close_paren prec O
| Diff(f, g) —>
open_paren prec O;
print O f; print_string " - "; print 1 g;
close_paren prec 0O
| Prod(f, g) —>
open_paren prec 2;
print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;
val print_expr : expression —> unit = <fun>

H OH HF OH OHF OH OH HF OH H HFH HHFH K HH

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Comnst 1.)

print_expr e; print_newline();;
2. * x + 1.
- : unit = ()

+H+

print_expr (deriv e "x"); print_newline();;
2. 1. + 0. xx + 0.
- : unit = ()

Parsing (transforming concrete syntax into abstract syntax) is usually more delicate. Caml
offers several tools to help write parsers: on the one hand, Caml versions of the lexer generator
Lex and the parser generator Yacc (see chapter [[2), which handle LALR(1) languages using push-
down automata; on the other hand, a predefined type of streams (of characters or tokens) and
pattern-matching over streams, which facilitate the writing of recursive-descent parsers for LL(1)
languages. An example using ocamllex and ocamlyacc is given in chapter [4. Here, we will use
stream parsers. The syntactic support for stream parsers is provided by the Camlp4 preprocessor,
which can be loaded into the interactive toplevel via the #load directive below.

#load "camlp4o.cma'";;

Camlp4 Parsing version 3.05 (2002-07-22)

open Genlex;;

let lexer = make_lexer [n(u; n)u; ll+ll; II_ll; n*n; ll/ll];;

val lexer : char Stream.t -> Genlex.token Stream.t = <fun>

For the lexical analysis phase (transformation of the input text into a stream of tokens), we use a
“generic” lexer provided in the standard library module Genlex. The make_lexer function takes

22

a list of keywords and returns a lexing function that “tokenizes” an input stream of characters.
Tokens are either identifiers, keywords, or literals (integer, floats, characters, strings). Whitespace
and comments are skipped.

let token_stream = lexer(Stream.of_string "1.0 +x");;
val token_stream : Genlex.token Stream.t = <abstr>

Stream.next token_stream;;
- : Genlex.token = Float 1.

Stream.next token_stream;;
- : Genlex.token = Kwd "+"

Stream.next token_stream;;
- : Genlex.token = Ident "x"

The parser itself operates by pattern-matching on the stream of tokens. As usual with re-
cursive descent parsers, we use several intermediate parsing functions to reflect the precedence
and associativity of operators. Pattern-matching over streams is more powerful than on regular
data structures, as it allows recursive calls to parsing functions inside the patterns, for matching
sub-components of the input stream. See chapter [] for more details.

In order to use stream parsers at toplevel, we must first load the camlp4 preprocessor.

#load"camlp4o.cma";;
Camlp4 Parsing version 3.05 (2002-07-22)

Then we are ready to define our parser.

let rec parse_expr = parser
[< el = parse_mult; e = parse_more_adds el >] -> e
and parse_more_adds el = parser
[< ’Kwd "+"; e2 = parse_mult; e = parse_more_adds (Sum(el, e2)) >] -> e
| [< ’Kwd "-"; e2 = parse_mult; e = parse_more_adds (Diff(el, e2)) >] -> e
| [<>] > el
and parse_mult = parser
[< el = parse_simple; e = parse_more_mults el >] -> e
parse_more_mults el = parser
[< ’Kwd "x"; e2 = parse_simple; e = parse_more_mults (Prod(el, e2)) >] -> e
| [< ’Kwd "/"; e2 = parse_simple; e = parse_more_mults (Quot(el, e2)) >] -> e
| [>] -> el
and parse_simple = parser
[< ’Ident s >] -> Var s
| [< ’Int i >] -> Const(float i)
| [< ’Float f >] -> Comnst f
| [< ’Kwd "("; e = parse_expr; ’Kwd ")" >] -> e;;
val parse_expr : Genlex.token Stream.t -> expression = <fun>
val parse_more_adds : expression -> Genlex.token Stream.t -> expression =
<fun>
val parse_mult : Genlex.token Stream.t -> expression = <fun>
val parse_more_mults : expression -> Genlex.token Stream.t -> expression =

H OH HF H H HF H H H K H H H HF H HH
Q

Chapter 1. The core language 23

<fun>
val parse_simple : Genlex.token Stream.t -> expression = <fun>

let parse_expression = parser [< e = parse_expr; _ = Stream.empty >] -> e;;
val parse_expression : Genlex.token Stream.t -> expression = <fun>

Composing the lexer and parser, we finally obtain a function to read an expression from a
character string:

let read_expression s = parse_expression(lexer(Stream.of_string s));;
val read_expression : string —-> expression = <fun>

read_expression "2*(x+y)";;
- : expression = Prod (Const 2., Sum (Var "x", Var "y"))

A small puzzle: why do we get different results in the following two examples?

read_expression "x - 1";;
- : expression = Diff (Var "x", Const 1.)

read_expression "x-1";;
Exception: Stream.Error "".

Answer: the generic lexer provided by Genlex recognizes negative integer literals as one integer
token. Hence, x-1 is read as the token Ident "x" followed by the token Int(-1); this sequence
does not match any of the parser rules. On the other hand, the second space in x - 1 causes the
lexer to return the three expected tokens: Ident "x", then Kwd "-", then Int(1).

1.9 Standalone Caml programs

All examples given so far were executed under the interactive system. Caml code can also be
compiled separately and executed non-interactively using the batch compilers ocamlc or ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. Here is a sample standalone program to print Fibonacci numbers:

(* File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib(n-1) + fib(n-2);;
let main () =
let arg = int_of_string Sys.argv.(l) in
print_int(fib arg);
print_newline();
exit 0;;
main ();;
Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus

the first command-line parameter. The program above is compiled and executed with the following
shell commands:

24

$ ocamlc -o fib fib.ml
$./fib 10

89

$./fib 20

10946

Chapter 2

The module system

This chapter introduces the module system of Objective Caml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =

struct

type priority = int

type ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
if lprio <= rprio

then Node(lprio, lelt, remove_top left, right)

25

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
module PrioQueue :
sig

type priority = int
and ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
val empty : ’a queue
val insert : ’a queue -> priority -> ’a -> ’a queue
exception Queue_is_empty
val remove_top : ’a queue —-> ’a queue
val extract : ’a queue -> priority * ’a * ’a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue. insert in a value context is the function
insert defined inside the structure PrioQueue. Similarly, PrioQueue.queue in a type context is
the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prio(Jueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (* still concrete *)
type ’a queue (* now abstract *)
val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a *x ’a queue
exception Queue_is_empty
end; ;
module type PRIOQUEUE =
sig

type priority = int
and ’a queue

Chapter 2. The module system 27

val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a * ’a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioueue : PRIOQUEUE

AbstractPrioQueue.remove_top;;
Unbound value AbstractPrio(lueue.remove_top

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;
An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

2.3 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures: a structure A parameterized by a structure B is simply a functor F' with a formal
parameter B (along with the expected signature for B) which returns the actual structure A itself.
The functor F can then be applied to one or several implementations B; ... B, of B, yielding the
corresponding structures Ay ... A,.

For instance, here is a structure implementing sets as sorted lists, parameterized by a structure
providing the type of the set elements and an ordering function over this type (used to keep the
sets sorted):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val compare: t -> t -> comparison
end;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end

module Set =
functor (Elt: ORDERED_TYPE) ->
struct

[\]
oo

type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with
0 -> [xl]
| hd::t1l ->
match Elt.compare x hd with
Equal -> s (* x is already in s *)
| Less -> X :: 8 (* x is smaller than all elements of s *)
| Greater —> hd :: add x tl
let rec member x s =
match s with
[-> false
| hd::t1 ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater -> member x tl
end;;
module Set :

functor (E1t : ORDERED_TYPE) ->

sig

type element = Elt.t

and set = element list

val empty : ’a list

val add : Elt.t -> Elt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =
struct

type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end; ;

module OrderedString :
sig type t = string val compare : ’a —-> ’a -> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
and set = element list
val empty : ’a list
val add : OrderedString.t -> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t —-> OrderedString.t list -> bool

Chapter 2. The module system 29

end

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

module type SETFUNCTOR =

functor (Elt: ORDERED_TYPE) ->

sig

type element = Elt.t (¥ concrete *)
type set (* abstract *)
val empty : set

val add : element -> set -> set

val member : element -> set -> bool

end;;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
and set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
and set = AbstractSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

AbstractStringSet.add '"gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

30

module type SET =
sig
type element
type set
val empty : set
val add : element -> set —-> set
val member : element -> set -> bool
end;;
module type SET =
sig
type element
and set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (El1t : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet (OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
and set = WrongSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

WrongStringSet.add "gee" WrongStringSet.empty;;
This expression has type string but is here used with type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET is
defined in a context where E1t does not exist. To overcome this difficulty, Objective Caml provides
a with type construct over signatures that allows to enrich a signature with extra type equalities:

module AbstractSet =

(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet :
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
and set

val empty : set
val add : element -> set -> set

Chapter 2. The module system 31

val member : element -> set -> bool
end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

module NoCaseString =
struct

type t = string

let compare sl s2 =

OrderedString.compare (String.lowercase sl1) (String.lowercase s2)

end;;
module NoCaseString :

sig type t = string val compare : string -> string —> comparison end

#
#
#
#

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
and set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

NoCaseStringSet.add "FO0" AbstractStringSet.empty;;
This expression has type

AbstractStringSet.set = AbstractSet (OrderedString).set
but is here used with type

NoCaseStringSet.set = AbstractSet(NoCaseString).set

Notice that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), both are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-

32

cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In Objective Caml, compilation units are special cases of structures and signatures, and the
relationship between the units can be explained easily in terms of the module system. A compilation
unit a comprises two files:

e the implementation file a.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file a.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

Both files define a structure named A (same name as the base name a of the two files, with the
first letter capitalized), as if the following definition was entered at top-level:

module A: sig (* contents of file a.mli *) end
= struct (* contents of file a¢.ml *) end;;

The files defining the compilation units can be compiled separately using the ocamlc -c command
(the -c option means “compile only, do not try to link”); this produces compiled interface files
(with extension .cmi) and compiled object code files (with extension .cmo). When all units have
been compiled, their .cmo files are linked together using the ocaml command. For instance, the
following commands compile and link a program composed of two compilation units aux and main:

$ ocamlc -c aux.mli # produces aux.cmi
$ ocamlc -c aux.ml # produces aux.cmo
$ ocamlc -c main.mli # produces main.cmi
$ ocamlc -c main.ml # produces main.cmo

$ ocamlc -o theprogram aux.cmo main.cmo
The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of aux.mli *) end

= struct (* contents of aux.ml *) end;;
module Main: sig (* contents of main.mli *) end

= struct (* contents of main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in main.ml and
main.mli can refer to definition in aux.ml, using the Aux.ident notation, provided these definitions
are exported in aux.mli.

The order in which the .cmo files are given to ocaml during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Notice that only top-level structures can be mapped to separately-compiled files, but not func-
tors nor module types. However, all module-class objects can appear as components of a structure,
so the solution is to put the functor or module type inside a structure, which can then be mapped
to a file.

Chapter 3

Objects in Caml

(Chapter written by Jérome Vouillon and Didier Rémy)

This chapter gives an overview of the object-oriented features of Objective Caml.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

class point =
object

val mutable x = 0

method get_x = x

method move d = x <- x + d
end;;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.
let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods to p:

pHget_x;;
- : int = 0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

33

34

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =

object

val mutable x = incr x0; !x0
method get_x = x

method move d = x <- x + d

end;;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

new point#get_x;;
- : int =1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#
#
#

Like in function definitions, the definition above can be abbreviated as:

class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point
object:

new point;;
- : int -> point = <fun>

let p = new point 7;;
val p : point = <obj>

Chapter 3. Objects in Caml 35

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x +d
end;;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

H OH HF H OH

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 in
object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternative solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

36

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as decribed below in section B.3.

3.2 Reference to self

A method or an initializer can send messages to self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

class printable_point x_init =
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 7;;
val p : printable_point = <obj>

p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

3.3 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, is can access self and the instance
variables.

class printable_point x_init =

let origin = (x_init / 10) * 10 in
object (self)

val mutable x = origin

Chapter 3. Objects in Caml 37

method get_x = x
method move d = x <- x +d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline()
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section p.1].

3.4 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =
object (self)
val mutable x = x_init
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
val mutable x : int
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit
end

class point x_init =

object

inherit abstract_point x_init
method get_x = x

method move d = x <- x + d

38

end;;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

3.5 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end

let p = new restricted_point O;;
val p : restricted_point = <obj>

p#move 10;;
This expression has type restricted_point
It has no method move

p#bump; ;
- : unit = ()

Private methods are inherited (they are by default visible in subclasses), unless they are hidden by
signature matching, as described below.
Private methods can be made public in a subclass.

class point_again x =

object (self)

inherit restricted_point x
method virtual move

Chapter 3. Objects in Caml 39

end;;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The annotation virtual here is only used to mention a method without providing its definition.
Since we didn’t add the private annotation, this makes the method public, keeping the original
definition.

An alternative definition is

class point_again x =
object (self : < move : _; ..>)
inherit restricted_point x
end;;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The constraint on self’s type is requiring a public move method, and this is sufficient to override
private.

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible to pick its code and define a method of the
same name that runs that code, so yet another (heavier) solution would be

class point_again x =

object
inherit restricted_point x as super
method move = super#move
end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.

40

3.6 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

class type restricted_point_type =

object

method get_x : int
method bump : unit
end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

fun (x : restricted_point_type) -> x;;
- : restricted_point_type —-> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a class.
Both instance variables and concrete private methods can be hidden by a class type constraint.
Public and virtual methods, however, cannot.

class restricted_point’ x = (restricted_point x : restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

Or, equivalently:

class restricted_point’ = (restricted_point : int -> restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

module type POINT = sig

class restricted_point’ : int ->
object

method get_x : int

method bump : unit

end

end;;

module type POINT =

sig
class restricted_point’
int -> object method bump : unit method get_x : int end
end

module Point : POINT = struct

class restricted_point’ = restricted_point
end;;

module Point : POINT

Chapter 3. Objects in Caml 41

3.7 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

class colored_point x (c : string) =
object
inherit point x
val ¢ = ¢
method color = c
end;;
class colored_point :
int ->
string ->
object

val ¢ : string

val mutable x : int

method color : string

method get_offset : int

method get_x : int

method move : int -> unit
end

let p’ = new colored_point 5 "red";;
val p’ : colored_point = <obj>

p’#get_x, p’#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

let get_succ_x p = p#Hget_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

get_succ_x p + get_succ_x p’;;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : ’a; .. > -> ’a = <fun>

let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> ’a; .. > -> ’a = <fun>

42

3.8 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

class printable_colored_point y ¢ =
object (self)
val ¢ = ¢
method color = c
inherit printable_point y as super
method print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

let p’ = new printable_colored_point 17 "red";;
new point at (10, red)
val p’ : printable_colored_point = <obj>

p’#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

3.9 Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

class ref x_init =
object

Chapter 3. Objects in Caml 43

val mutable x = x_init
method get = x
method set y = x <- y
__end;;
Some type variables are unbound in this type:
class ref :
)a ->
object val mutable x : ’a method get : ’a method set : ’a -> unit end
The method get has type ’a where ’a is unbound

#
#
#
#

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus either the class should be parametric, or the method type should
be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class ref (x_init:int) =
object
val mutable x = x_init
method get = x
method set y = x <- y
end; ;
class ref :
int ->

object val mutable x : int method get : int method set : int -> unit end

A class for polymorphic references must explicitly list the type parameters in its declaration. Class
type parameters are always listed between [and]. The type parameters must also be bound
somewhere in the class body by a type constraint.

class [’al] ref x_init =
object
val mutable x = (x_init : ’a)
method get = x
method set y = x <- y
end;;
class [’a] ref :
’a —-> object val mutable x : ’a method get : ’a method set : ’a -> unit end

let r = new ref 1 in r#set 2; (ri#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

class [’al] ref_succ (x_init:’a) =
object

val mutable x = x_init + 1

method get = x

method set y = x <- y

44

end;;
class [’a] ref_succ :
T =>
object
constraint ’a = int
val mutable x : int
method get : int
method set : int -> unit
end

Let us consider a more complex example: define a circle, whose center may be any kind of point. We
put an additional type constraint in method move, since no free variables must remain unaccounted
for by the class type parameters.

class [’al] circle (c : ’a) =
object
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = (center#move : int -> unit)
end;;
class [’a] circle :

‘a —>

object

constraint ’a = < move : int -> unit; .. >

val mutable center : ’a

method center : ’a

method move : int -> unit

method set_center : ’a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

class [’al] circle (¢ : ’a) =
object
constraint ’a = #point
val mutable center = c
method center = center
method set_center c = center <- ¢
method move = center#move
end;;
class [’a] circle :

‘a =>

object

Chapter 3. Objects in Caml 45

constraint ’a = #point

val mutable center : ’a

method center : ’a

method move : int -> unit

method set_center : ’a -> unit
end

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [and]J.

class [’a] colored_circle c =
object
constraint ’a = #colored_point
inherit [’al] circle c
method color = center#color
end; ;
class [’a] colored_circle :
‘a ->
object

constraint ’a = #colored_point

val mutable center : ’a

method center : ’a

method color : string

method move : int -> unit

method set_center : ’a -> unit
end

3.10 Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow
polymorphism of method use.
A classical example is defining an iterator.

List.fold_left;;
- : (’a ->"’b ->"’a) -> ’a -> ’b list -> ’a = <fun>

class [’a] intlist (1 : int list) =

object

method empty = (1 = [])

method fold f (accu : ’a) = List.fold_left f accu 1
end; ;

class [’al] intlist :
int list ->
object method empty : bool method fold : (’a -> int -> ’a) -> ’a -> ’a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.

46

let 1 = new intlist [1; 2; 3];;
val 1 : ’_a intlist = <obj>

1#fold (fun x y —> x+y) 0;;

- : int = 6

#1;;

- : int intlist = <obj>

1#fold (fun s x -> s ~ string of_int x =~ " ") "";;

This expression has type int but is here used with type string

Our iterator works, as shows its first use for summation. However, since objects themselves are not
polymorphic (only their constructors are), using the fold method fixes its type for this individual
object. Our next attempt to use it as a string iterator fails.

The problem here is that quantification was wrongly located: this is not the class we want to
be polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic
type in the method definition.

class intlist (1 : int list) =

object

method empty = (1 = [])

method fold : ’a. (’a -> int -> ’a) -> ’a -> ’a =
fun f accu -> List.fold_left f accu l

end;;

class intlist :
int list ->
object method empty : bool method fold : (’a -> int -> ’a) -> ’a -> ’a end

let 1 = new intlist [1; 2; 3];;
val 1 : intlist = <obj>

1#fold (fun x y -> x+y) 0;;
- : int = 6

1#fold (fun s x -> s ~ string _of_int x ~ " ") "";;
: string = "1 2 3"

As you can see in the class type shown by the compiler, while polymorphic method types must be
fully explicit in class definitions (appearing immediately after the method name), they can be left
implicit in class descriptions.

However, the type can be completely omitted in the class definition if it is already known,
through inheritance or type constraints on self. Here is an example of method overriding.

class intlist_rev 1 =

object

inherit intlist 1

method fold f accu = List.fold_left f accu (List.rev 1)
end;;

The following idiom separates description and definition.

Chapter 3. Objects in Caml 47

class type [’al iterator =
object method fold : (°b -> ’a -> ’b) -> ’b -> ’b end;;

#
#
class intlist 1 =

object (self : int #iterator)

method empty = (1 = [])

method fold f accu = List.fold_left f accu 1
end;;

Note here the (self : int #iterator) idiom, which ensures that this object implements the
interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should
be aware of some limitations of type inference. Namely, a polymorphic method can only be called
if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic,
and given an incompatible type.

let sum lst = lst#fold (fun x y -> x+y) 0;;

val sum : < fold : (int -> int -> int) -> int -> ’a; .. > -> ’a = <fun>
sum 1;;
This expression has type

intlist = < empty : bool; fold : ’a. (’a -> int -> ’a) -> ’a -> ’a >

but is here used with type
< empty : bool; fold : (int -> int -> int) -> int -> ’b >

The workaround is easy: you should put a type constraint on the parameter.

let sum (I1st : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurences of quantified
variables are required.

let sum 1lst =
(st : < fold : ’a. (Pa -> _ => ’a) => ’a => ’a; .. >)#fold (+) 0;;
val sum : < fold : ’a. (’a -> int -> ’a) -> ’a -> ’a; .. > -> int = <fun>

Another use of polymorphic methods is to allow some form of implicit subtyping in method
arguments. We have already seen in section B.7q how some functions may be polymorphic in the
class of their argument. This can be extended to methods.

class type pointO = object method get_x : int end;;
class type pointO = object method get_x : int end

class distance_point x =

object

inherit point x

method distance : ’a. (#pointO as ’a) -> int =
fun other -> abs (other#get_x - x)

end;;

class distance_point :

48

int ->
object
val mutable x : int
method distance : #point(O -> int
method get_offset : int
method get_x : int
method move : int -> unit
end

let p = new distance_point 3 in

(p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#pointO as ’a) we have to use to quantify the extensible part
of #point0. As for the variable binder, it can be omitted in class specifications. If you want
polymorphism inside object field it must be quantified independently.

class multi_poly =

object
method m1 : ’a. (< nl : ’b. ’b -> ’b; .. > as ’a) -> _ =
fun o -> o#nl true, o#nl "hello"
method m2 : ’a ’b. (< n2 : ’b => bool; .. > as ’a) -> ’b -> _ =
fun o x -> o#n2 x
end;;
class multi_poly :
object
method m1 : < nl : ’a. ’a -> ’a; .. > -> bool * string
method m2 : < n2 : ’b -> bool; .. > -> ’b -> bool
end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2,
the argument of n2 and x must have the same type, which is quantified at the same level as ’a.

3.11 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

let 1 = [p; (colored_point_to_point q)l;;
val 1 : point list = [<obj>; <obj>]

Chapter 3. Objects in Caml 49

An object of type t can be seen as an object of type t’ only if t is a subtype of t’. For instance,
a point cannot be seen as a colored point.

(p : point :> colored_point);;
Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of type
colored_point =
< color : string; get_offset : int; get_x : int; move : int -> unit >

Indeed, narrowing coercions would be unsafe, and could only be combined with a type case, possibly
raising a runtime error. However, there is no such operation available in the language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can usually be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

class cO = object method m = {< >} method n = 0 end;;
class cO : object (’a) method m : ’a method n : int end

The object type c is an abbreviation for <m : ’a; n : int> as ’a. Consider now the type
declaration:

class type cl = object method m : cl end;;
class type cl = object method m : cl end

The object type c1 is an abbreviation for the type <m : ’a> as ’a. The coercion from an object
of type c0 to an object of type c1 is correct:

fun (x:c0) —> (x : cO > cl);;
- : ¢c0 -> cl1 = <fun>

However, the domain of the coercion cannot be omitted here:

fun (x:c0) > (x :> cl);;

This expression cannot be coerced to type cl = <m : cl >; it has type
cO=<m: cO; n: int > as ’a

but is here used with type ’a

Type cO = ’a is not compatible with type ’a

Type cO = ’a is not compatible with type c1 = <m : c1 >

Only the first object type has a method n.

This simple coercion was not fully general. Consider using a double coercion.

The solution is to use the explicit form. Sometimes, a change in the class-type definition can also
solve the problem

50

class type c2 = object (’a) method m : ’a end;;
class type c2 = object (’a) method m : ’a end

fun (x:c0) -> (x :> c2);;
- : ¢c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object
type (same method names and types). Yet, when the domain of a coercion is left implicit and its
co-domain is an abbreviation of a known class type, then the class type, rather than the object
type, is used to derive the coercion function. This allows to leave the domain implicit in most
cases when coercing form a subclass to its superclass. The type of a coercion can always be seen
as below:

let to_cl x = (x :> cl);;
val to_cl : <m : #cl; .. > -> c1 = <fun>

let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>

Note the difference between the two coercions: in the second case, the type #c2 = < m : ’a;

> as ’a is polymorphically recursive (according to the explicit recursion in the class type of c2);
hence the success of applying this coercion to an object of class c0. On the other hand, in the first
case, c1 was only expanded and unrolled twice to obtain< m : <m : c1; .. >; .. > (remember
#cl = <m : cl; .. >), without introducing recursion. You may also note that the type of to_c2
is #c2 -> c¢2 while the type of to_c1 is more general than #c1 -> c1. This is not always true,
since there are class types for which some instances of #c are not subtypes of c, as explained in
section B-I15. Yet, for parameterless classes the coercion (_ :> c) is always more general than (_
: #c > ¢).

A common problem may occur when one tries to define a coercion to a class ¢ while defining
class c. The problem is due to the type abbreviation not being completely defined yet, and so its
subtypes are not clearly known. Then, a coercion (_ :> ¢) or (_ : #c :> c¢) is taken to be the
identity function, as in

function x -> (x :> ’a);;
- : ’a -> ’a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class ¢ = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c)

end;;

This expression cannot be coerced to type ¢ = < m : int >; it has type

Chapter 3. Objects in Caml 51

<as_c : ’a; m : int; n : int; .. >
but is here used with type ¢ = < m : int >
Self type cannot be unified with a closed object type

However, the most common instance of this problem, coercing self to its current class, is detected
as a special case by the type checker, and properly typed.

class ¢ = object (self) method m = (self :> c) end;;
class ¢ : object method m : ¢ end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

let all_c = ref [1;;
val all_c : ’_a list ref = {contents = []}

class ¢ (m : int) =
object (self)

method m = m
initializer all_c := (self :> c) :: !all_c
end;;

class ¢ : int -> object method m : int end
This idiom can in turn be used to retrieve an object whose type has been weakened:

let rec lookup_obj obj = function [] -> raise Not_found

| obj’ :: 1 —>
if (obj :> < >) = (obj’ :> < >) then obj’ else lookup_obj obj 1 ;;
val lookup_obj : < .. > => (< .. > as ’a) list -> ’a = <fun>

let lookup_c obj = lookup_obj obj 'all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have
succeeded in getting back an object of type c.

The previous coercion problem can often be avoided by first defining the abbreviation, using a
class type:

class type c’ = object method m : int end;;
class type c’ = object method m : int end

class ¢ : ¢’ = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c’)

end;;

class ¢ : ¢’

class d : object method as_c : ¢’ method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously allows to enforce
all methods of ¢ to have the same type as the methods of c’.

52

class virtual ¢’ = object method virtual m : int end;;
class virtual c’ : object method virtual m : int end

class ¢ = object (self) inherit c¢’ method m = 1 end;;
class ¢ : object method m : int end

One could think of defining the type abbreviation directly:
type ¢’ = <m : int>;;

However, the abbreviation #c’ cannot be defined directly in a similar way. It can only be defined by
a class or a class-type definition. This is because # sharp abbreviations carry an implicit anonymous
variable .. that cannot be explicitly named. The closer you get to it is:

type ’a c’_class = ’a constraint ’a =< m : int; .. >;;

with an extra type variable capturing the open object type.

3.12 Functional objects

It is possible to write a version of class point without assignments on the instance variables. The
construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing the
value of some instance variables.

class functional_point y
object

val x = y

method get_x = x

x +d >}
#

method move d = {< x
end;;
class functional_point :
int ->
object (’a) val x : int method get_x : int method move : int -> ’a end

let p = new functional_point 7;;
val p : functional_point = <obj>

pHget_x;;
- :int =7

+H+

(p#move 3)#get_x;;
: int = 10

pHget_x;;
- :int =7

Note that the type abbreviation functional_point is recursive, which can be seen in the class
type of functional_point: the type of self is ’a and ’a appears inside the type of the method
move.

The above definition of functional_point is not equivalent to the following:

Chapter 3. Objects in Caml 53

class bad_functional_point y =
object
val x = y
method get_x = x
method move d = new functional_ point (x+d)
end; ;
class bad_functional_point :
int ->
object
val x : int
method get_x : int
method move : int -> functional_point
end

let p = new functional_point 7;;
val p : functional_point = <obj>

pHget_x;;
- :int =7

(p#move 3)#get_x;;

- : int = 10
pHget_x;;
- :int =7

While objects of either class will behave the same, objects of their subclasses will be different. In
a subclass of the latter, the method move will keep returning an object of the parent class. On the
contrary, in a subclass of the former, the method move will return an object of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section
S}

3.13 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo . copy
makes a shallow copy of an object. That is, it returns an object that is equal to the previous one.
The instance variables have been copied but their contents are shared. Assigning a new value to an
instance variable of the copy (using a method call) will not affect instance variables of the original,
and conversely. A deeper assignment (for example if the instance variable if a reference cell) will
of course affect both the original and the copy.

The type of Oo.copy is the following:

0o.copy;;
- : (< .. >as ’a) -> ’a = <fun>

The keyword as in that type binds the type variable ’a to the object type < .. >. Therefore,
Oo. copy takes an object with any methods (represented by the ellipsis), and returns an object of
the same type. The type of Oo.copy is different from type < .. > => < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

54

let p = new point 5;;
val p : point = <obj>

let q = Oo.copy p;;
val q : < get_offset : int; get_x : int; move : int -> unit > = <obj>

g#tmove 7; (p#get_x, qitget_x);;
- : int * int = (5, 12)

In fact, Do.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : < get_offset : int; get_x : int; move : int -> unit > = <obj>

#p=4d, P=P;;

- : bool * bool = (false, true)

Other generic comparissons such as (<, <=,...) can also be used on objects. The relation < defines

an unspecified but strict ordering on objets. The ordering relationship between two objects is fixed

once for all after the two objects have been created and it is not affected by mutation of fields.
Cloning and override have a non empty intersection. They are interchangeable when used within

an object and without overriding any field:

class copy =

object
method copy = {< >}
end;;

class copy : object (’a) method copy : ’a end

class copy =

object (self)

method copy = Oo.copy self

end; ;

class copy : object (’a) method copy : ’a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup =
object (self : ’mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
class backup :

object (’a)

val mutable copy : ’a option

Chapter 3. Objects in Caml 55

method restore : ’a
method save : unit
end

The above definition will only backup one level. The backup facility can be added to any class
using multiple inheritance.

class [’al backup_ref x = object inherit [’a] ref x inherit backup end;;
class [’al] backup_ref :
‘a =>
object (’b)
val mutable copy : ’b option
val mutable x : ’a
method get : ’a
method restore : ’b
method save : unit
method set : ’a —> unit
end

let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : ’b; restore : ’a; .. > as ’a) -> int -> ’b = <fun>

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 1; 1; 1]

A variant of backup could retain all copies. (We then add a method clear to manually erase all
copies.)

class backup =
object (self : ’mytype)
val mutable copy = None
method save = copy <- Some {< >}
method restore = match copy with Some x -> x | None -> self
method clear = copy <- None
end;;
class backup :
object (’a)
val mutable copy : ’a option
method clear : unit
method restore : ’a
method save : unit
end

class [’al backup_ref x = object inherit [’al ref x inherit backup end;;
class [’al] backup_ref :
)a _>
object (’b)
val mutable copy : ’b option
val mutable x : ’a

56

method clear : unit

method get : ’a

method restore : ’b

method save : unit

method set : ’a -> unit
end

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p 0; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 0; 0; 0]

3.14 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window =
object
val mutable top_widget = (None : widget option)
method top_widget = top_widget
end
and widget (w : window) =
object
val window = w
method window = window
end;;
class window :
object
val mutable top_widget : widget option
method top_widget : widget option
end
class widget :
window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.15 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type a -> bool where
the type variable ’a is bound to the type of self. Therefore, #comparable expands to < leq : ’a
-> bool; .. > as ’a. We see here that the binder as also allows to write recursive types.

class virtual comparable =
object (_ : ’a)
method virtual leq : ’a -> bool

Chapter 3. Objects in Caml 57

end;;
class virtual comparable : object (’a) method virtual leq : ’a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. There is a type constraint on the class
parameter x as the primitive <= is a polymorphic comparison function in Objective Caml. The
inherit clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) =

object

inherit comparable

val repr = x

method value = repr

method leq p = repr <= p#value
#

end;;
class money :

float ->

object (’a)
val repr : float
method leq : ’a —> bool
method value : float

end

Note that the type moneyl is not a subtype of type comparable, as the self type appears in
contravariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m
of type comparable would allow to call method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

class money2 x =

object
inherit money x
method times k = {< repr = k *. repr >}
end;;
class money2 :
float ->

object (’a)
val repr : float
method leq : ’a —> bool
method times : float -> ’a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2: the
function min will return the minimum of any two objects whose type unifies with #comparable. The
type of min is not the same as #comparable —> #comparable -> #comparable, as the abbreviation
#comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a
new variable.

58

let min (x : #comparable) y =
if x#leq y then x else y;;
val min : (#comparable as ’a) -> ’a -> ’a = <fun>

This function can be applied to objects of type money or money?2.

(min (new money 1.3) (new money 3.1))#value;;
: float = 1.3

(min (new money2 5.0) (new money2 3.14))#value;;
: float = 3.14

More examples of binary methods can be found in sections b.2.1 and b.2.3.

Notice the use of functional update for method times. Writing new money2 (k *. repr)
instead of {< repr = k *. repr >} would not behave well with inheritance: in a subclass money3
of money2 the times method would return an object of class money2 but not of class money3 as
would be expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x =
object (self : ’a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= pi#value
method plus (p : ’a) = {< repr = x +. p#value >}
end;;
class money :
float ->
object (’a)
val repr : float
method leq : ’a —> bool
method plus : ’a -> ’a
method print : unit
method times : float -> ’a
method value : float
end

3.16 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as long as some binary requires access to the representation on object of the same class
but different from self.

Chapter 3. Objects in Caml 59

class safe_money x =
object (self : ’a)
val repr = x
method print = print_float repr
method times k = {< repr = k *. x >}
end;;
class safe_money :
float ->
object (’a)
val repr : float
method print : unit
method times : float -> ’a
end

#
#
#
#
#
#

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

module type MONEY =
sig
type t
class ¢ : float —>
object (’a)
val repr : t
method value : t
method print : unit
method times : float -> ’a
method leq : ’a —> bool
method plus : ’a -> ’a
end
end;;

#

#

#

#

#

#

#

#

#

#

#

#

module Euro : MONEY =

struct

type t = float

class c x =

object (self : ’a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= p#value
method plus (p : ’a) = {< repr = x +. p#value >}
end

#

end;;

Another example of friend functions may be found in section p.Z.3. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal

60

representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside of the module.

Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in Objective Caml 3: labels, and polymorphic
variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

ListLabels.map;;
- : f:(’a -> ’b) -> ’a list -> ’b list = <fun>
Stringlabels.sub;;

- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

let £ "x "y =x - y;;
val £ : x:int -> y:int -> int = <fun>
let x =3 and y =2 in £ "x 7y;;

- : int = 1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

let £ "x:x1 “y:yl = x1 - yi;;
val £ : x:int -> y:int -> int = <fun>

f "x:3 Ty:2;;

- : int =1

61

62

Labels obey the same rules as other identifiers in Caml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labelsf], the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

let £ "x "y =x - ¥y;;
val f : x:int -> y:int -> int = <fun>

£ "y:2 "x:3;;
- : int =1

+H+

ListLabels.fold_left;;
- : f:(’a -> ’b => ’a) -> init:’a -> ’b list -> ’a = <fun>

ListLabels.fold_left [1;2;3] ~init:0 “f:(+);;
- : int = 6

+H+

ListLabels.fold_left "init:0;;
- : f:(int -> ’a -> int) -> ’a list -> int = <fun>

If in a function several arguments bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

let hline "x:x1 "x:x2 7y = (x1, %2, y);;
val hline : x:’a -> x:’b -> y:’c -> ’a * ’b ¥ ’c = <fun>
hline "x:3 "y:2 "x:5;;

- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total, labels may
be omitted. In practice, most applications are total, so that labels can be omitted in applications.

£ 3 2;;
- : int =1
ListLabels.map succ [1;2;3];;

: int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

ListLabels.fold_left (+) 0 [1;2;3];;
This expression has type int -> int -> int but is here used with type ’a list

When a function is passed as an argument to an higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

!This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Chapter 4. Labels and variants 63

let h g =g "x:3 "y:2;;

val h : (x:int -> y:int -> ’a) -> ’a = <fun>
h f;;

- :int =1

#h (£);;

This expression has type int -> int -> int but is here used with type
x:int -> y:int -> ’a

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by 7 in the function type. Default values may be given for such optional parameters.

let bump 7(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>
bump 2;;

- : int = 3

bump “step:3 2;;

- : int =5

A function taking some optional arguments must also take at least one non-labeled argument.
This is because the criterion for deciding whether an optional has been omitted is the application
on a non-labeled argument appearing after this optional argument in the function type.

let test 27(x =0) ?2(y=0) O ?72(z=0) O = (x, 9, 2);;
val test : 7x:int -> ?y:int -> unit -> 7z:int -> unit -> int * int * int =
<fun>

test O;;
- : ?z:int -> unit -> int * int * int = <fun>
test "x:2 O "z:3 O;;

: int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabelled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.

test "y:2 "x:3 O O;3;
- : int * int * int = (3, 2, 0)
test O O “z:1 "y:2 "x:3;;

- : int * int * int = (3, 2, 1)

(test O Q) "z:l;;
This expression is not a function, it cannot be applied

64

Here (test () ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type ’a option = None | Some of ’a
You can then provide different behaviors when an argument is present or not.

let bump 7step x =
match step with

| None -> x * 2
| Somey ->x +y
#55

val bump : ?step:int -> int -> int = <fun>
p P

It may also be useful to relay an optional argument from a function call to another. This can
be done by prefixing the applied argument with ?. This question mark disables the wrapping of
optional argument in an option type.

let test2 7x 7y () = test 7x 7y O O;;
val test2 : ?x:int -> 7y:int -> unit -> int * int * int = <fun>

test2 7x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

let h’ g =g "y:2 "x:3;;

val h’ : (y:int -> x:int -> ’a) -> ’a = <fun>

#h’ £;;

This expression has type x:int -> y:int -> int but is here used with type
y:int -> x:int -> ’a

let bump_it bump x =

bump “step:2 x;;

val bump_it : (step:int -> ’a -> ’b) -> ’a -> ’b = <fun>

bump_it bump 1;;
This expression has type ?step:int -> int -> int but is here used with type
step:int -> ’a -> ’b

The first case is simple: g is passed “y and then “x, but £ expects “x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> ’a. These two types being

Chapter 4. Labels and variants 65

incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

let bump_it (bump : 7?step:int -> int -> int) x =

bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;

- : int = 3

In practive, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

let twice f (x : int) = £(f x);;
val twice : (int -> int) -> int -> int = <fun>

twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,
e is easy to remember,

e when possible, allows useful partial applications.

We explain here the rules we applied when labeling Objective Caml libraries.
To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination

66

of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear by the function itself. The parameters are labeled with names reminding either of their
nature or role. Best labels combine in their meaning nature and role. When this is not possible

the role is to prefer, since the nature will often be given by the type itself. Obscure abbreviations
should be avoided.

ListLabels.map : f:(’a -> ’b) -> ’a list -> ’b list
UnixLabels.write : file_descr -> buf:string -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:(’a -> ’b -> ’c) -> ’a list -> ’b list -> unit
When there is no preferable object, all arguments are labeled.

StringlLabels.blit :
src:string -> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.

StringlLabels.create : int -> string

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string or array

len: a length

buf: a string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Pervasives.compare
mode: | an operation mode or a flag list

All these are only suggestions, but one shall keep in mind that the choice of labels is essential
for readability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels shall be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.

Chapter 4. Labels and variants 67

4.2 Polymorphic variants

Variants as presented in section [.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact every constructor reserves a name to be used with a unique type. On cannot use the same
name in another type, or consider a value of some type to belong to some other type with more
constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character ‘.

[‘On; ‘Off];;
- : [> ‘Off | ‘On] list = [‘On; ‘Off]
‘Number 1;;

- : [> ‘Number of int] = ‘Number 1

let f = function ‘On -> 1 | ‘Off -> 0 | ‘Number n -> n;;
val £ : [< ‘Number of int | ‘Off | ‘On] -> int = <fun>

List.map f [‘On; ‘0ff];;
- : int list = [1; 0]

[>‘0ff| ‘On] 1list means that to match this list, you should at least be able to match ‘0ff and
‘On, without argument. [<‘On| ‘0ff| ‘Number of int] means that £ may be applied to ‘0ff, ‘On
(both without argument), or ‘Number n where n is an integer. The > and < inside the variant type
shows that they may still be refined, either by defining more tags or allowing less. As such they
contain an implicit type variable. Both variant types appearing only once in the type, the implicit
type variables they constrain are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type
annotations, one will most often describe fixed variant types, that is types that can be no longer
refined. This is also the case for type abbreviations. Such types do not contain < or >, but just an
enumeration of the tags and their associated types, just like in a normal datatype definition.

type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist];;
type ’a vlist = [‘Cons of ’a * ’a vlist | ‘Nil]

let rec map £ : ’a vlist -> ’b vlist = function
| ‘Nil -> ‘Nil

| ‘Cons(a, 1) -> ‘Cons(f a, map f 1)

#55

val map : (’a -> ’b) -> ’a vlist -> ’b vlist = <fun>

68

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

let £ = function ‘A -> ‘C | ‘B -> ‘D | x -> x;;
val £ : ([> ‘A | ‘B | ‘C | ‘D] as ’a) -> ’a = <fun>

f ‘E;;

-:_[>°Al ‘B| ‘C| ‘DI ‘E] = ‘E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> ‘A | ‘B] rather than [< ‘A | ‘B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as ’a denotes such type
sharing. If we apply f to yet another tag ‘E, it gets added to the list.

let f1 = function ‘A x > x =1 | ‘B -> true | ‘C -> false
let f2 = function ‘A x -> x = "a" | ‘B -> true ;;

val f1 : [< ‘A of int | ‘B | ‘C] -> bool = <fun>

val f2 : [< ‘A of string | ‘B] -> bool = <fun>

let £ x = f1 x && f2 x;;
val f : [< ‘A of string & int | ‘B] -> bool = <fun>

Here £1 and £2 both accept the variant tags ‘A and ‘B, but the argument of ‘A is int for £1 and
string for £2. In f’s type ‘C, only accepted by f1, disappears, but both argument types appear
for ‘A as int & string. This means that if we pass the variant tag ‘A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ‘A, and ‘B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

type ’a wlist = [‘Nil | ‘Cons of ’a * ’a wlist | ‘Snoc of ’a wlist * ’al;;
type ’a wlist = [‘Cons of ’a * ’a wlist | ‘Nil | ‘Snoc of ’a wlist * ’a]

let wlist_of_vlist 1 = (1 : ’a vlist :> ’a wlist);;
val wlist_of_vlist : ’a vlist -> ’a wlist = <fun>

let open_vlist 1 = (1 : ’a vlist :> [> ’a vlistl);;
val open_vlist : ’a vlist -> [> ’a vlist] = <fun>

fun x > (x :> [“Al‘B|‘Cl);;
-:[< A ‘B ‘¢l ->[°‘A| ‘B| ‘C] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function

| ‘Nil | ‘Cons _ as x -> ‘A x
| “Snoc as x -> ‘B x

#

val split_cases :
[< ‘Cons of ’a | ‘Nil | ‘Snoc of ’b] ->
[> ‘A of [> ‘Cons of ’a | ‘Nil] | ‘B of [> ‘Snoc of ’b]] = <fun>

Chapter 4. Labels and variants 69

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,
like incremental definition of functions.

let num x = ‘Num x
let evall eval (‘Num x) = x

let rec eval x = evall eval x ;;

val num : ’a -> [> ‘Num of ’a] = <fun>

val evall : ’a -> [‘Num of ’b] -> ’b = <fun>
val eval : [‘Num of ’a] -> ’a = <fun>

let plus x y = ‘Plus(x,y)
let eval2 eval = function

| ‘Plus(x,y) -> eval x + eval y

| ‘Num _ as x —> evall eval x

let rec eval x = eval2 eval x ;;

val plus : ’a -> ’b -> [> ‘Plus of ’a * ’b] = <fun>

val eval2 : (’a -> int) -> [< ‘Num of int | ‘Plus of ’a * ’a] -> int = <fun>
val eval : ([< ‘Num of int | ‘Plus of ’a * ’a] as ’a) -> int = <fun>

To make this even more confortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = [‘Tagl int | ‘Tag2 bool], then the
pattern #myvariant is equivalent to writing (‘Tagl(_ : int) | ‘Tag2(_ : bool))

Such abbreviations may be used alone,

let £ = function

| #myvariant -> "myvariant"

| ‘Tag3 -> "Tag3";;

val £ : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

or combined with with aliases.

let gl = function ‘Tagl _ -> "Tagl" | ‘Tag2 _ -> "Tag2";;
val g1 : [< ‘Tagl of ’a | ‘Tag2 of ’b] -> string = <fun>

let g = function

| #myvariant as x -> gl x

| ‘Tag3 -> "Tag3";;

val g : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core
language variants, rather than replacing them.

The answer is two fold. One first aspect is that while being pretty efficient, the lack of static
type information allows for less optimizations, and makes polymorphic variants slightly heavier than
core language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,

70

they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that certain idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

type abc = [‘A | ‘B | ‘CI ;;
type abc = [‘A | ‘B | ‘C]

let £ = function

| “As -> "A"

| #abc -> "other" ;;

val £ : [< ‘A | ‘4s | ‘B | ‘C] -> string = <fun>

let £ : abc -> string = f ;;
val £ : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

let £ : abc —> string = function
| (ﬁ —> "An

| #abc -> "other" ;;

Warning: this match case is unused.
val £ : abc -> string = <fun>

Chapter 5

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern know of as virtual types through the example of window managers.

5.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter B.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

let zero = euro O.;;
val zero : Euro.c = <obj>

let neg x = x#times (-1.);;
val neg : < times : float -> ’a; .. > -> ’a = <fun>

class account =
object
val mutable balance = zero
method balance = balance
method deposit x = balance <- balance # plus x
method withdraw x =
if x#leq balance then (balance <- balance # plus (neg x); x) else zero
end;;
class account :
object

71

72

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests =
object (self)
inherit account
method private interest = self # deposit (self # balance # times 0.03)
end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

class safe_account =

object
inherit account
method deposit x = if zero#leq x then balance <- balance#plus x
end;;
class safe_account :
object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

However, the bug might be fixed more safely by the following definition:

class safe_account =

object

inherit account as unsafe
method deposit x =

Chapter 5. Advanced examples with classes and modules 73

if zero#leq x then unsafe # deposit x
else raise (Invalid_argument "deposit")
end;;
class safe_account :

object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep trace of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

type ’a operation = Deposit of ’a | Retrieval of ’a;;
type ’a operation = Deposit of ’a | Retrieval of ’a

class account_with_history =
object (self)

inherit safe_account as super
val mutable history = []
method private trace x = history <- x :: history
method deposit x = self#trace (Deposit x); super#deposit x
method withdraw x = self#trace (Retrieval x); super#withdraw x
method history = List.rev history
end;;
class account_with_history :
object

val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c
end

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initializer.

class account_with_deposit x =

object
inherit account_with_history
initializer balance <- x
end;;
class account_with_deposit :
Euro.c ->
object

val mutable balance : Euro.c

74

val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

A better alternative is:

class account_with_deposit x =
object (self)

inherit account_with_history
initializer self#deposit x
end; ;

class account_with_deposit :

Euro.c ->

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in
let balance = ccp#withdraw (euro 50.) in
ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw (c#balance);;
val close : < balance : ’a; withdraw : ’a -> ’b; .. > -> ’b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some
currency.

let today () = (01,01,2000) (* an approximation *)
module Account (M:MONEY) =

struct

type m = M.c

let m = new M.c

let zero = m O.

Chapter 5. Advanced examples with classes and modules

H OHF H OH OHF OH H HF H HHF R HH HEHHHHFHHHFEHHEHH K HHHEHHEHHHEHFHHHFEHHHFEH K

class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then

(balance <- balance # plus (neg x); self#trace (Retrieval x); x)

else zero
method history = List.rev history
end

class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end

class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self) initializer self#deposit y end

module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x
end

let discount x =
let ¢ = new account x in

if today() < (1998,10,30) then c # deposit (m 100.); c

end
end;;

75

This shows the use of modules to group several class definitions that can in fact be thought of as

76

a single unit. This unit would be provided by a bank for both internal and external uses. This is
implemented as a functor that abstracts over the currency so that the same code can be used to
provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined).
This is the one that will be used for further extensions, refinements, etc. Conversely, the client will
only be given the client view.

module Euro_account = Account(Euro);;
module Client = Euro_account.Client (Euro_account);;

new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts.
Their only way to change their balance is to deposit or withdraw money. It is important to give
the clients a class and not just the ability to create accounts (such as the promotional discount
account), so that they can personalize their account. For instance, a client may refine the deposit
and withdraw methods so as to do his own financial bookkeeping, automatically. On the other
hand, the function discount is given as such, with no possibility for further personalization.

It is important that to provide the client’s view as a functor Client so that client accounts can
still be build after a possible specialization of the bank. The functor Client may remain unchanged
and be passed the new definition to initialize a client’s view of the extended account.

module Investment_account (M : MONEY) =

struct

type m = M.c

module A = Account (M)

#

class bank =

object

inherit A.bank as super

method deposit x =

if (new M.c 1000.)#leq x then
print_string "Would you like to invest?";
super#deposit x

end

#

module Client = A.Client

end;;

The functor Client may also be redefined when some new features of the account can be given to
the client.

module Internet_account (M : MONEY) =
struct

type m = M.c

module A = Account (M)

class bank =

Chapter 5. Advanced examples with classes and modules 77

object

inherit A.bank

method mail s = print_string s
end

class type client_view =

object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
method mail : string -> unit

end

module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit A.check_client x
end
end
end;;

H OH HF H OH OH OH HFH HHH HHHHH HEHH K HH

5.2 Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as
objects. Although this is usually uninteresting for integers or strings, there may be some situations
where this is desirable. The class money above is such an example. We show here how to do it for
strings.

5.2.1 Strings

A naive definition of strings as objects could be:

class ostring s =
object
method get n = String.get n
method set n ¢ = String.set n ¢
method print = print_string s
method copy = new ostring (String.copy s)
end;;
class ostring :
string ->

object

78

method copy : ostring

method get : string -> int -> char

method print : unit

method set : string -> int -> char -> unit
end

However, the method copy returns an object of the class string, and not an objet of the current
class. Hence, if the class is further extended, the method copy will only return an object of the
parent class.

class sub_string s =
object
inherit ostring s
method sub start len = new sub_string (String.sub s start len)
end;;
class sub_string :
string ->
object
method copy : ostring
method get : string -> int -> char
method print : unit
method set : string -> int -> char -> unit
method sub : int -> int -> sub_string
end

As seen in section B.13, the solution is to use functional update instead. We need to create an
instance variable containing the representation s of the string.

class better_string s =
object

val repr = s

method get n = String.get n
method set n ¢ = String.set n c
#

#

#

#

method print = print_string repr
method copy = {< repr = String.copy repr >}
method sub start len = {< repr = String.sub s start len >}

end;;
class better_string :
string ->

object (’a)
val repr : string
method copy : ’a
method get : string -> int -> char
method print : unit
method set : string -> int -> char -> unit
method sub : int -> int -> ’a
end

As shown in the inferred type, the methods copy and sub now return objects of the same type as
the one of the class.

Chapter 5. Advanced examples with classes and modules 79

Another difficulty is the implementation of the method concat. In order to concatenate a string
with another string of the same class, one must be able to access the instance variable externally.
Thus, a method repr returning s must be defined. Here is the correct definition of strings:

class ostring s =
object (self : ’mytype)
val repr = s
method repr = repr
method get n = String.get n
method set n ¢ = String.set n ¢
method print = print_string repr
method copy = {< repr = String.copy repr >}
method sub start len = {< repr = String.sub s start len >}
method concat (t : ’mytype) = {< repr = repr " t#repr >}
end; ;
class ostring :
string ->
object (’a)
val repr : string
method concat : ’a -> ’a
method copy : ’a
method get : string -> int -> char
method print : unit
method repr : string
method set : string -> int -> char -> unit
method sub : int -> int -> ’a
end

Another constructor of the class string can be defined to return an uninitialized string of a given
length:

class cstring n = ostring (String.create n);;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the
representation of strings as we hid the currency in the class money of section B.18.

Stacks

There is sometimes an alternative between using modules or classes for parametric data types.
Indeed, there are situations when the two approaches are quite similar. For instance, a stack can
be straightforwardly implemented as a class:

exception Empty;;
exception Empty

class [’a] stack =
object

val mutable 1
method push x

([0 : ’a list)
1 <= x::1

80

method pop = match 1 with [] -> raise Empty | a::1’ -> 1 <- 1’; a
method clear = 1 <- []
method length = List.length 1
end;;
class [’al] stack :
object
val mutable 1 : ’a list
method clear : unit
method length : int
method pop : ’a
method push : ’a -> unit
end

However, writing a method for iterating over a stack is more problematic. A method fold would
have type (°’b -> ’a -=> ’b) -> ’b -> ’b. Here ’a is the parameter of the stack. The parameter
’b is not related to the class ’a stack but to the argument that will be passed to the method
fold. A naive approach is to make ’b an extra parameter of class stack:

class [’a, ’b] stack2 =

object
inherit [’a] stack
method fold f (x : ’b) = List.fold_left f x 1
end;;
class [’a, ’b] stack2 :
object
val mutable 1 : ’a list

method clear : unit
method fold : (’b -> ’a -> ’b) -> ’b -> ’b
method length : int
method pop : ’a
method push : ’a -> unit
end

However, the method fold of a given object can only be applied to functions that all have the same
type:

let s = new stack2;;
val s : (’_a, ’_b) stack2 = <obj>

s#fold (+) 0;;

- : int =0

s;;

- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in Objective Caml version
3.05. Polymorphic methods makes it possible to treat the type variable ’b in the type of fold as
universally quantified, giving fold the polymorphic type Forall ’b. (°b -> ’a -> ’b) -> ’b
-> ’b. An explicit type declaration on the method fold is required, since the type checker cannot
infer the polymorphic type by itself.

Chapter 5. Advanced examples with classes and modules 81

class [’al] stack3 =
object
inherit [’a] stack
method fold : ’b. (b -> ’a -> ’b) -> ’b -> ’b
= fun f x -> List.fold_left f x 1
end; ;
class [’a] stack3 :
object
val mutable 1 : ’a list
method clear : unit
method fold : (b -> ’a -> ’b) -> ’b -> ’b
method length : int
method pop : ’a
method push : ’a -> unit
end

5.2.2 Hashtbl

A simplified version of object-oriented hash tables should have the following class type.
class type [’a, ’b] hash_table =

object

method find : ’a -> ’b

method add : ’a -> ’b -> unit
end;;

class type [’a, ’b] hash_table =
object method add : ’a -> ’b -> unit method find : ’a -> ’b end

A simple implementation, which is quite reasonable for small hastables is to use an association list:

class [’a, ’b] small_hashtbl : [’a, ’b] hash_table =
object

val mutable table = []

method find key = List.assoc key table

method add key valeur = table <- (key, valeur) :: table
end;;

class [’a, ’b] small_hashtbl : [’a, ’b] hash_table

A better implementation, and one that scales up better, is to use a true hash tables... whose
elements are small hash tables!

class [’a, ’b] hashtbl size : [’a, ’b] hash_table =
object (self)
val table = Array.init size (fun i -> new small_hashtbl)
method private hash key =
(Hashtbl.hash key) mod (Array.length table)
method find key = table.(self#hash key) # find key
method add key = table.(self#hash key) # add key
end;;
class [’a, ’b] hashtbl : int -> [’a, ’b] hash_table

H O H HF H H H

82

5.2.3 Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access
the internal representation of another object of the same class.

This is another instance of friend functions as seen in section B.1@. Indeed, this is the same
mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return
the representation of a set. Since sets are parametric in the type of elements, the method tag has a
parametric type ’a tag, concrete within the module definition but abstract in its signature. From
outside, it will then be guaranteed that two objects with a method tag of the same type will share
the same representation.

module type SET =

sig
type ’a tag
class [’al ¢
object (’b)

method is_empty : bool
method mem : ’a -> bool
method add : ’a -> ’b
method union : ’b -> ’b

method iter : (’a -> unit) -> unit
method tag : ’a tag
end
end;;
module Set : SET =
struct

let rec merge 11 12 =
match 11 with

] -> 12
| h1 :: t1 —>
match 12 with
0 -> 11
| h2 :: t2 ->

if hl < h2 then hl :: merge t1 12
else if hl > h2 then h2 :: merge 11 t2
else merge t1 12
type ’a tag = ’a list
class [’al c =
object (_ : ’b)
val repr = ([] : ’a list)
method is_empty = (repr = [])
method mem x = List.exists ((=) x) repr
method add x = {< repr = merge [x] repr >}
method union (s : ’b) = {< repr = merge repr s#tag >}
method iter (f : ’a -> unit) = List.iter f repr

H OH O HF H H HF H OH H K H H HHH HHHHHHE OHFHHEHHHEHH K H R

Chapter 5. Advanced examples with classes and modules 83

method tag = repr
end
end;;

5.3 The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature
as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the
definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject
and an event to execute an action.

class virtual [’subject, ’event] observer =

object
method virtual notify : ’subject -> ’event -> unit
end; ;

class virtual [’a, ’b] observer :
object method virtual notify : ’a -> ’b -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished
method notify_observers to broadcast the message notify to all observers with a particular
event e.

class [’observer, ’event] subject =
object (self)
val mutable observers = ([]:’observer list)
method add_observer obs = observers <- (obs :: observers)
method notify_observers (e : ’event) =
List.iter (fun x -> x#notify self e) observers
end;;
class [’a, ’b] subject :
object (’c)
constraint ’a = < notify : ’c -> ’b -> unit; .. >
val mutable observers : ’a list
method add_observer : ’a -> unit
method notify_observers : ’b —-> unit
end

The difficulty usually relies in defining instances of the pattern above by inheritance. This can be
done in a natural and obvious manner in Ocaml, as shown on the following example manipulating
windows.

type event = Raise | Resize | Move;;
type event = Raise | Resize | Move

let string_of_event = function
Raise -> "Raise" | Resize —> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>

84

let count = ref O;;
val count : int ref = {contents = 0}

class [’observer] window_subject =
let id = count := succ !count; !count in
object (self)
inherit [’observer, event] subject
val mutable position = 0
method identity = id
method move x = position <- position + x; self#notify_observers Move
method draw = Printf.printf "{Position = %d}\n" position;
end;;
class [’al] window_subject :
object (’b)
constraint ’a = < notify : ’b -> event -> unit; .. >
val mutable observers : ’a list
val mutable position : int
method add_observer : ’a —-> unit
method draw : unit
method identity : int
method move : int -> unit
method notify_observers : event -> unit
end

class [’subject] window_observer =

object
inherit [’subject, event] observer
method notify s e = s#draw
end;;
class [’al] window_observer :
object
constraint ’a = < draw : unit; .. >
method notify : ’a -> event -> unit
end

Unsurprisingly the type of window is recursive.

let window = new window_subject;;
val window : < notify : ’a -> event -> unit; _.. > window_subject as ’a =
<obj>

However, the two classes of window_subject and window_observer are not mutually recursive.

let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>

window#add_observer window_observer;;
- : unit = ()

window#move 1;;
{Position = 1}
- : unit = ()

Chapter 5. Advanced examples with classes and modules 85

Classes window_observer and window_subject can still be extended by inheritance. For in-
stance, one may enrich the subject with new behaviors and refined the behavior of the observer.

class [’observer] richer_window_subject =
object (self)

H OH HF O H OH H H

inherit [’observer] window_subject

val mutable size = 1

method resize x = size <- size + x; self#notify_observers Resize

val mutable top = false

method raise = top <- true; self#notify_observers Raise

method draw = Printf.printf "{Position = %d; Size = %d}\n" position size;

end;;

class [’al] richer_window_subject :
object (’b)

constraint ’a = < notify : ’b -> event -> unit; .. >
val mutable observers : ’a list
val mutable position : int
val mutable size : int
val mutable top : bool
method add_observer : ’a -> unit
method draw : unit
method identity : int
method move : int -> unit
method notify_observers : event -> unit
method raise : unit
method resize : int -> unit

end

class [’subject] richer_window_observer =

object
inherit [’subject] window_observer as super
method notify s e = if e <> Raise then s#raise; super#notify s e
end;;
class [’al] richer_window_observer :
object
constraint ’a = < draw : unit; raise : unit; .. >

method notify : ’a -> event -> unit

end

We can also create a different kind of observer:

class [’subject] trace_observer =
object

#
#
#
#
#

class

inherit [’subject, event] observer
method notify s e =
Printf.printf
"<Window %d <== ¥%s>\n" s#identity (string_of_event e)

end;;

[’a] trace_observer :

object

86

constraint ’a = < identity :

method
end

int;

notify : ’a -> event -> unit

and attached several observers to the same object:

let window = new richer_window_subject;;
val window :

’a -> event -> unit;

> richer_window_subject as ’a

window#add_observer (new richer_window_observer);;

window#add_observer (new trace_observer);;

window#move 1; window#resize 2;;

< notify :

- : unit = ()

- : unit = ()

<Window 2 <== Move>
<Window 2 <== Raise>
{Position = 1; Size =
{Position = 1; Size =
<Window 2 <== Resize>
<Window 2 <== Raise>
{Position = 1; Size =
{Position = 1; Size =
- : unit = ()

1}
1}

3}
3}

<obj>

Part 11

The Objective Caml language

87

Chapter 6

The Objective Caml language

Foreword

This document is intended as a reference manual for the Objective Caml language. It lists the
language constructs, and gives their precise syntax and informal semantics. It is by no means a
tutorial introduction to the language: there is not a single example. A good working knowledge of
Caml is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (1ike this). Non-terminal symbols are set in italic font (like that). Square brackets [...]
denote optional components. Curly brackets {...} denotes zero, one or several repetitions of
the enclosed components. Curly bracket with a trailing plus sign {...}* denote one or several
repetitions of the enclosed components. Parentheses (. ..) denote grouping.

6.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage
return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals
and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are handled correctly.

89

90

Identifiers
ident = (letter | _) {letter | 0...9|_ |}
letter == A...Z|a...z

Identifiers are sequences of letters, digits, _ (the underscore character), and ’ (the single quote),
starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase
letters from the ASCII set. The current implementation (except on MacOS) also recognizes as
letters all accented characters from the ISO 8859-1 (“ISO Latin 1”) set. All characters in an
identifier are meaningful. The current implementation places no limits on the number of characters
of an identifier.

Integer literals

integer-literal == [-] {0...9}T
| [-](0x|0X){0...9]A...F|a...f}*
} H EOO |00) {0...7}"

Ob|OB) {0...1}*

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, 0X | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.) The interpretation of integer literals
that fall outside the range of representable integer values is undefined.

Floating-point literals

float-literal == [-]{0...9}* [. {0...9}] [(e |E) [+|-] {0...9}7]

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal
part is a decimal point followed by zero, one or more digits. The exponent part is the character
e or E followed by an optional + or - sign, followed by one or more digits. The decimal part or
the exponent part can be omitted, but not both to avoid ambiguity with integer literals. The
interpretation of floating-point literals that fall outside the range of representable floating-point
values is undefined.

Character literals

char-literal ::= °’ regular-char ’
> escape-sequence ’

escape-sequence = \(\|"|’|n|[t]|b]|r)

| \(0...9)(0...9)(0...9)

Chapter 6. The Objective Caml language 91

Character literals are delimited by ’ (single quote) characters. The two single quotes enclose
either one character different from ’> and \, or one of the escape sequences below:

Sequence | Character denoted
\\ backslash (\)
\" double quote (")
\’ single quote (?)
\n linefeed (LF)
\r carriage return (CR)
\t horizontal tabulation (TAB)
\b backspace (BS)
\ddd the character with ASCII code ddd in decimal
String literals
string-literal ::= " {string-character} "
string-character := regular-char-str

| escape-sequence

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table given above
for character literals.

To allow splitting long string literals across lines, the sequence \newline blanks (a \ at end-of-
line followed by any number of blanks at the beginning of the next line) is ignored inside string
literals.

The current implementation places practically no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels cannot just be defined syntactically as the sequence of the
three tokens ~, ident and :, and have to be defined at the lexical level.

label == ~(a...z){letter |0...9|_|’}:
optlabel = 7 (a...z){letter |0...9|_ |’} :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones.
They are simply distinguished by their first character, either ~ or 7.

Prefix and infix symbols
infix-symbol == (=|<|>|@ |~ || |&|+|-|*]|/|$|%) {operator-char}
prefix-symbol = (! |7 |~) {operator-char}

operator-char == ' |$|%|&|*x|+]|-|.|/|:|<|=|>]|7]@|" |||~

92

Sequences of “operator characters”, such as <=> or !!, are read as a single token from the
infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside
expressions, but otherwise behave much as identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as assert asr begin class
closed constraint do done downto else
end exception external false for fun
function functor if in include inherit
land lazy let lor 1sl lsr
lxor match method mod module mutable
new of open or parser private
rec sig struct then to true
try type val virtual when while
with

The following character sequences are also keywords:

& ’ () * s -> ?

77 (L : e 1= ;

3 <- = [Ll [< {<] 1]

>] >} _ ¢ { | } -
Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

Line number directives

linenum-directive = #{0...9}"
| #{0...9}" " {string-character} "

Preprocessors that generate Caml source code can insert line number directives in their output
so that error messages produced by the compiler contain line numbers and file names referring
to the source file before preprocessing, instead of after preprocessing. A line number directive is
composed of a # (sharp sign), followed by a positive integer (the source line number), optionally
followed by a character string (the source file name). Line number directives are treated as blank
characters during lexical analysis.

Chapter 6. The Objective Caml language 93

6.2 Values

This section describes the kinds of values that are manipulated by Objective Caml programs.

6.2.1 Base values

Integer numbers

Integer values are integer numbers from —23° to 230 — 1, that is —1073741824 to 1073741823. The
implementation may support a wider range of integer values: on 64-bit platforms, the current
implementation supports integers ranging from —262 to 262 — 1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation
uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of
mantissa and an exponent ranging from —1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The current implementation interprets
character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings con-
taining up to 224 — 6 characters (16777210 characters).

6.2.2 Tuples

Tuples of values are written (vy,...,v,), standing for the n-tuple of values v; to v,. The current
implementation supports tuple of up to 222 — 1 elements (4194303 elements).

6.2.3 Records

Record values are labeled tuples of values. The record value written { fieldy = v1;...; field, = v,}
associates the value v; to the record field field;, for ¢ = 1...n. The current implementation
supports records with up to 222 — 1 fields (4194303 fields).

6.2.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation
supports arrays containing to 222 — 1 elements (4194303 elements).

94

6.2.5 Variant values

Variant values are either a constant constructor, or a pair of a non-constant constructor and a
value. The former case is written cconstr; the latter case is written ncconstr(v), where v is said to
be the argument of the non-constant constructor ncconstr.

The following constants are treated like built-in constant constructors:

Constant | Constructor
false the boolean false
true the boolean true
O the “unit” value
] the empty list

The current implementation limits the number of distinct constructors in a given variant type
to at most 249.

6.2.6 Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined
variant type, and following specific typing rules. They can be either constant, written ¢ tag-name,
or non-constant, written ¢ tag-name (v).

6.2.7 Functions

Functional values are mappings from values to values.

6.2.8 Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set
of methods for accessing and modifying these variables. The structure of an object is described by
the toplevel class that created it.

6.3 Names

Identifiers are used to give names to several classes of language objects and refer to these objects
by name later:

e value names (syntactic class value-name),

e value constructors (constant — class cconstr-name — or non-constant — class ncconstr-name),
e labels (label-name),

e variant tags (tag-name),

e type constructors (typeconstr-name),

e record fields (field-name),

e class names (class-name),

Chapter 6. The Objective Caml language 95

e method names (method-name),

e instance variable names (inst-var-name),
e module names (module-name),

e module type names (modtype-name).

These nine name spaces are distinguished both by the context and by the capitalization of the
identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below)
or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this
purpose.

Naming objects

lowercase-ident

value-name ::=
| (operator-name)

operator-name = prefix-symbol | infix-symbol | * | = | or | & | :=

cconstr-name ::= capitalized-ident
| false
| true
| [1
| O

ncconstr-name ::= capitalized-ident

label-name
tag-name
typeconstr-name
field-name
module-name
modtype-name
class-name
inst-var-name

method-name

lowercase-ident
capitalized-ident
lowercase-ident
lowercase-ident
capitalized-ident
ident
lowercase-ident
lowercase-ident

lowercase-ident

As shown above, prefix and infix symbols as well as some keywords can be used as value names,
provided they are written between parentheses. Keywords such as ’::> and ’false’ are also constructor
names. The capitalization rules are summarized in the table below.

96

Name space Case of first letter
Values lowercase
Constructors uppercase
Labels lowercase
Variant tag uppercase
Type constructors | lowercase
Record fields lowercase
Classes lowercase
Methods lowercase
Modules uppercase
Module types any

Note on variant tags: the current implementation accepts lowercase variant tags in addition
to uppercase variant tags, but we suggest you avoid lowercase variant tags for portability and
compatibility with future OCaml versions.

Referring to named objects

value-path ::= value-name
| module-path . lowercase-ident

cconstr ::= cconstr-name
| module-path . capitalized-ident

ncconstr ::= ncconstr-name
| module-path . capitalized-ident

typeconstr = typeconstr-name
| extended-module-path . lowercase-ident
field = field-name

| module-path . lowercase-ident

module-path ::= module-name
| module-path . capitalized-ident

:= module-name
| extended-module-path . capitalized-ident
| extended-module-path (extended-module-path)

extended-module-path

modtype-path ::= modtype-name
| extended-module-path . ident

class-path := class-name
| module-path . lowercase-ident

A named object can be referred to either by its name (following the usual static scoping rules
for names) or by an access path prefix . name, where prefix designates a module and name is
the name of an object defined in that module. The first component of the path, prefix, is either
a simple module name or an access path name; . names,..., in case the defining module is itself
nested inside other modules. For referring to type constructors or module types, the prefix can

Chapter 6. The Objective Caml language 97

also contain simple functor applications (as in the syntactic class extended-module-path above), in
case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the
former three are global labels, while the latter are local to a class.

6.4 Type expressions

typexpr := ’ ident

(typexpr)

[[?] ident :] typexpr -> typexpr
typexpr {* typexpr}*

typeconstr

typexpr typeconstr

(typexpr {, typexpr}) typeconstr
typexpr as ’ ident

[variant-type]

<[..]>

< method-type {; method-type} [; ..]>
class-path

typexpr # class-path

(typexpr {, typexpr}) # class-path

poly-typexpr = typexpr
| {’ ident}" . typexpr

method-type ::= method-name : poly-typexpr

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

* _

-> right

as —

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ’ ident stands for the type variable named ident. The type expression _ stands
for an anonymous type variable. In data type definitions, type variables are names for the data
type parameters. In type constraints, they represent unspecified types that can be instantiated by
any type to satisfy the type constraint. In general the scope of a named type variable is the whole
enclosing definition; they can only be generalized when leaving this scope. Anonymous variables
have no such restriction.

98

Parenthesized types

The type expression (typexpr) denotes the same type as typexpr.

Function types

The type expression typexpr; -> typexpr, denotes the type of functions mapping arguments of
type typexpr; to results of type typexprsy.
label typexpr; => typexpr, denotes the same function type, but the argument is labeled label.
? label typexpr; —> typexpr, denotes the type of functions mapping an optional labeled argu-
ment of type typexpr; to results of type typexpry. That is, the physical type of the function will
be typexpr; option -> typexpr,.

Tuple types

The type expression typexpr; *...* typexpr,, denotes the type of tuples whose elements belong to
types typexpry, ... typexpr,, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.
The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.
The type expression (typexpr, ..., typexpr,) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the n-ary type constructor typeconstr to the
types typexpr; through typexpr,,.

Aliased and recursive types

The type expression typexpr as ’ ident denotes the same type as typexpr, and also binds the
type variable ident to type typexpr both in typexpr and in the remaining part of the type. If
the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for
which there exists a recursive path that does not contain an object or variant type constructor are
rejected, except when the -rectypes mode is selected.

If > ident denotes an explicit polymorphic variable, and typexpr denotes either an object or
variant type, the row variable of typexpr is captured by ’ ident, and quantified upon.

Chapter 6. The Objective Caml language 99

Variant types

[I] tag-spec {| tag-spec}
> [tag-spec] {| tag-spec}
<[] tag-spec-full {| tag-spec-full} [> {¢ tag-name}T]

variant-type

tag-spec = ¢ tag-name [of typexpr]
| typexpr
tag-spec-full ::= ¢ tag-name [of typexpr| {& typexpr}
| typexpr

Variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types,
and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the
list of all tags the value could take, with their associated types. This type is still compatible with a
variant type containing more tags. A special case is the unknown type, which does not define any
tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and their
associated types, and which tags are known to potentially appear in values. The above exact variant
type is just an abbreviation for a closed variant type where all possible tags are also potentially
present.

In all three cases, tags may be either specified directly in the ‘“¢ag-name [...] form, or indirectly
through a type expression. In this last case, the type expression must expand to an exact variant
type, whose tag specifications are inserted in its place.

Full specification of variant tags are only used for non-exact closed types. They can be under-
stood as a conjunctive type for the argument: it is intended to have all the types enumerated in
the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may
not be used in a value of this type. This does not mean that the whole type is not valid: one can
still use other available tags.

Object types

An object type < method-type {; method-type} > is a record of method types.

Each method may have an explicit polymorphic type: {’ ident}™ . typexpr. Explicit poly-
morphic variables have a local scope, and an explicit polymorphic type can only be unified to an
equivalent one, with polymorphic variables at the same positions.

The type < method-type {; method-type} ; .. > is the type of an object with methods and
their associated types are described by method-typey, ..., method-type,,, and possibly some other
methods represented by the ellipsis. This ellipsis actually is a special kind of type variable (also
called row variable in the literature) that stands for any number of extra method types.

100

#-types

The type # class-path is a special kind of abbreviation. This abbreviation unifies with the type of
any object belonging to a subclass of class class-path. It is handled in a special way as it usually
hides a type variable (an ellipsis, representing the methods that may be added in a subclass).
In particular, it vanishes when the ellipsis gets instantiated. Each type expression # class-path
defines a new type variable, so type # class-path —> # class-path is usually not the same as type
(# class-path as ’ ident) -> * ident.

Use of #-types to abbreviate variant types is deprecated. If t is an exact variant type then #t
translates to [< t], and #t[> ‘tag; ... ‘tag,] translates to [<t > ‘tag;... ‘tag,]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are
always named, i.e. defined before use and referred to by name. Type definitions are described in
section BXT.

6.5 Constants

integer-literal
float-literal
char-literal
string-literal
cconstr

¢ tag-name

constant

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), and constant constructors from both normal and
polymorphic variants.

Chapter 6. The Objective Caml language 101

6.6 Patterns

pattern := value-name
| _
| constant
| pattern as value-name
| (pattern)
| (pattern : typexpr)
| pattern | pattern
| ncconstr pattern
| ¢ tag-name pattern
| # typeconstr-name
| pattern {, pattern}
| { field = pattern {; field = pattern} }
| [pattern {; pattern}]
| pattern :: pattern
| [pattern {; pattern} |]

The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity
Constructor application | —

right
| left

as -

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The
pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot appear several times in a given pattern. In particular,
there is no way to test for equality between two parts of a data structure using only a pattern (but
when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

102

Alias patterns

The pattern pattern, as value-name matches the same values as pattern;. If the matching against
pattern; is successful, the name name is bound to the matched value, in addition to the bindings
performed by the matching against pattern;.

Parenthesized patterns

The pattern (pattern;) matches the same values as pattern;. A type constraint can appear in a
parenthesized pattern, as in (pattern; : typexpr). This constraint forces the type of pattern; to
be compatible with type.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
pattern,. A value matches pattern; | pattern, either if it matches pattern; or if it matches
patterny. The two sub-patterns pattern; and pattern, must bind exactly the same identifiers to
values having the same types. The bindings performed by matching against an “or” pattern are
either those performed by the matching against pattern,, if it succeeds, or those performed by the
matching against pattern,, if it succeeds. If both matchings succeed, it is undefined which set of
bindings is selected.

Variant patterns

The pattern ncconstr pattern; matches all variants whose constructor is equal to ncconstr, and
whose argument matches pattern;.

The pattern pattern; :: pattern, matches non-empty lists whose heads match pattern,, and
whose tails match pattern,. This pattern behaves like (::) (pattern; , pattern,).

The pattern [pattern; ;...; pattern,] matches lists of length n whose elements match
pattern; ... pattern,, respectively. This pattern behaves like pattern; :: ... :: pattern, :: [].

Polymorphic variant patterns
The pattern ‘tag-name pattern; matches all polymorphic variants whose tag is equal to tag-name,
and whose argument matches pattern,.

Variant abbreviation patterns

If the type [(’a,’b,...)] typeconstr = [‘tag; t; |...| ‘tag, t,] is defined, then the pattern
typeconstr is a shorthand for the or-pattern (‘tag, (_ : t1) | ... | ‘tag, (_: t,)). It matches
gl gn
all values of type #typeconstr.

Tuple patterns

The pattern pattern; , ..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,. That is, the pattern matches the tuple values (vi,...,v,) such that
pattern; matches v; fori =1,...,n.

Chapter 6. The Objective Caml language 103

Record patterns

The pattern { field; = pattern; ;...; field, = pattern, } matches records that define at least
the fields field; through field,, and such that the value associated to field; matches the pattern
pattern,, for i = 1,...,n. The record value can define more fields than field; ... field,; the values

associated to these extra fields are not taken into account for matching.

Array patterns

The pattern [| pattern; ;...; pattern, |] matches arrays of length n such that the i-th array
element matches the pattern pattern;, for i =1,... ,n.

104

6.7 Expressions

expr := value-path
| constant
| Cexpr)

| begin expr end

| Cexpr : typexpr)

| expr , expr {, expr}

| ncconstr expr

| ¢ tag-name expr

| expr :: expr

| [expr{; expr}]

| [I expr {; expr} |]

| { field = expr {; field = expr} }

| { expr with field = expr {; field = expr} }

| expr {argument}™

| prefix-symbol expr

| expr infix-op expr

| expr . field

| expr . field <- expr

| expr .(expr)

| expr .(expr) <- expr

| expr . [expr]

| expr .[expr] <- expr

| if expr then expr [else expr]

| while expr do expr done

| for ident = expr (to | downto) expr do expr done

| expr ; expr

| match expr with pattern-matching

| function pattern-matching

| fun multiple-matching

| try expr with pattern-matching

| let [rec] let-binding {and let-binding} in expr

| new class-path

| expr # method-name

| Cexpr :> typexpr)

| Cexpr : typexpr :> typexpr)

| {< inst-var-name = expr {; inst-var-name = expr} >}

argument = expr
| ~ label-name
| ~ label-name : expr
| 7 label-name

|

? label-name : expr

Chapter 6. The Objective Caml language

pattern-matching
multiple-matching

let-binding

parameter

infix-op

105

[l] pattern [when expr| => expr {| pattern [when expr| -> expr}
{parameter}* [when expr] -> expr

pattern [: typexpr| = expr
value-name {parameter}™ [: typexpr] = expr

pattern

~ label-name

~ (label-name [: typexpr])
~ label-name : pattern

? label-name

? (label-name [: typexpr]| [= expr])

? label-name : pattern

? label-name : (pattern [: typexpr] [= expr|)

infix-symbol
x| =|or|&

The table below shows the relative precedences and associativity of operators and non-closed
constructions. The constructions with higher precedence come first. For infix and prefix symbols,

we write “k..

.7 to mean “any symbol starting with *”.

Construction or operator Associativity
prefix-symbol -

. (C L -
function application left
constructor application -

- -. (prefix) -
LL right
*. .. /... /S mod left
- left
HH right
Q.. ... right
comparisons (= == < etc.), all other infix symbols | left
not -
& && left
or || left
<- = right
if —
; right
let match fun function try -

106

6.7.1 Basic expressions
Constants

Expressions consisting in a constant evaluate to this constant.

Value paths

Expressions consisting in an access path evaluate to the value bound to this path in the current eval-
uation environment. The path can be either a value name or an access path to a value component
of a module.

Parenthesized expressions

The expressions (expr) and begin expr end have the same value as expr. Both constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in (expr : type). This constraint
forces the type of expr to be compatible with type.

Parenthesized expressions can also contain coercions (expr [: type] :> type) (see subsec-

tion (.7.9 below).

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression
expr argument, ...argument,, evaluates the expression expr and those appearing in argument; to
argument,. The expression expr must evaluate to a functional value f, which is then applied to

the values of argument,, ..., argument,,.
The order in which the expressions expr, argument,,...,argument,, are evaluated is not spec-
ified.

Arguments and parameters are matched according to their respective labels. Argument order
is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?7) in the type of expr, the corresponding
argument will be automatically wrapped with the constructor Some, except if the argument itself
is also prefixed by 7, in which case it is passed as is. If a non-labeled argument is passed, and its
corresponding parameter is preceded by one or several optional parameters, then these parameters
are defaulted, i.e. the value None will be passed for them. All other missing parameters (without
corresponding argument), both optional and non-optional, will be kept, and the result of the
function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their
number matches the number of non-optional parameters, then labels are ignored and non-optional
parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function
type should be known at the application point. This can be ensured by adding a type constraint.
Principality of the derivation can be checked in the -principal mode.

Chapter 6. The Objective Caml language 107

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword
function:

function pattern; -> expry

| pattern, -> expr,

This expression evaluates to a functional value with one argument. When this function is applied
to a value v, this value is matched against each pattern pattern; to pattern,. If one of these
matchings succeeds, that is, if the value v matches the pattern pattern; for some i, then the
expression expr; associated to the selected pattern is evaluated, and its value becomes the value
of the function application. The evaluation of expr; takes place in an environment enriched by the
bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is
selected. If none of the patterns matches the argument, the exception Match_failure is raised.

The other form of function definition is introduced by the keyword fun:
fun parameter; ... parameter,, —> expr
This expression is equivalent to:
fun parameter; ->...fun parameter,, -> expr

Functions of the form fun optlabel (pattern = expry,) —> expr are equivalent to
fun optlabel x -> let pattern = match x with Some x -> x | None —-> expr, in expr

where x is a fresh variable. When expr, will be evaluated is left unspecified.
After these two transformations, expressions are of the form

fun [label;| pattern; -=>...fun [label,] pattern, -> expr
If we ignore labels, which will only be meaningful at function application, this is equivalent to
function pattern; ->...function pattern, -> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values v; ... vy, the values will be matched in parallel against the
patterns pattern, ... pattern,. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.

Guards in pattern-matchings

Cases of a pattern matching (in the function, fun, match and try constructs) can include guard
expressions, which are arbitrary boolean expressions that must evaluate to true for the match case
to be selected. Guards occur just before the -> token and are introduced by the when keyword:

108

function pattern; [when condy] -> expr;

| pattern,, [when cond,] -> expr,

Matching proceeds as described before, except that if the value matches some pattern pattern;
which has a guard cond;, then the expression cond; is evaluated (in an environment enriched by
the bindings performed during matching). If cond; evaluates to true, then expr; is evaluated and
its value returned as the result of the matching, as usual. But if cond; evaluates to false, the
matching is resumed against the patterns following pattern,.

Local definitions

The let and let rec constructs bind value names locally. The construct
let pattern, = expr; and...and pattern, = expr, in expr

evaluates expr; ... expr,, in some unspecified order, then matches their values against the patterns
pattern; ... pattern,,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter ... parameter,, —> expr
in a let expression, one may instead write

let ident parameter; ... parameter,, = expr

Recursive definitions of names are introduced by let rec:
let rec pattern; = expr; and...and pattern, = expr,, in expr

The only difference with the let construct described above is that the bindings of names to values
performed by the pattern-matching are considered already performed when the expressions expr;
to expr,, are evaluated. That is, the expressions expr; to expr,, can reference identifiers that are
bound by one of the patterns pattern,, ..., pattern,, and expect them to have the same value as
in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr; to
expr,, are function definitions (fun... or function...), and the patterns pattern, ... pattern, are
just value names, as in:

n?

let rec namej = fun...and...and name, = fun... in expr

This defines name; ... name, as mutually recursive functions local to expr.

The behavior of other forms of 1let rec definitions is implementation-dependent. The current
implementation also supports a certain class of recursive definitions of non-functional values, such
as

let rec namej =1 :: names and names = 2 :: name; in expr

which binds name; to the cyclic list 1::2::1::2::..., and names to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions where
the defined names occur only inside function bodies or as argument to a data constructor.

Chapter 6. The Objective Caml language 109

6.7.2 Control structures
Sequence

The expression expr; ; expr, evaluates expr; first, then expry, and returns the value of expr,.

Conditional

The expression if expr; then expr, else exprs evaluates to the value of expr, if expr; evaluates
to the boolean true, and to the value of exprs if expr, evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else (.

Case expression

The expression
match expr
with pattern,; -> expry
I

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against
pattern; succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr; takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expr; && expry evaluates to true if both expr; and expr, evaluate to true; oth-
erwise, it evaluates to false. The first component, expr;, is evaluated first. The second com-
ponent, expry, is not evaluated if the first component evaluates to false. Hence, the expression
expr, && expr, behaves exactly as

if expr; then expr, else false.

The expression expr; || expr, evaluates to true if one of expr; and expr, evaluates to true;
otherwise, it evaluates to false. The first component, expr;, is evaluated first. The second
component, expry, is not evaluated if the first component evaluates to true. Hence, the expression
expr; || expry, behaves exactly as

if expr; then true else expr,.

The boolean operator & is synonymous for &&. The boolean operator or is synonymous for | |.

110

Loops

The expression while expr; do expry done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expr; is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for name = expr; to expr, do exprs done first evaluates the expressions expr;
and expr, (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where name is successively bound to the values n, n+1, ..., p—1,
p. The loop body is never evaluated if n > p.

The expression for name = expr; downto expry do exprs done evaluates similarly, except that
name is successively bound to the valuesn, n — 1, ..., p+ 1, p. The loop body is never evaluated
if n <p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression
try expr
with pattern; -> expry
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern; to pattern,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

6.7.3 Operations on data structures
Products

The expression expr; , ..., expr, evaluates to the n-tuple of the values of expressions expr; to
expr,,. The evaluation order for the subexpressions is not specified.

Variants

The expression ncconstr expr evaluates to the variant value whose constructor is ncconstr, and
whose argument is the value of expr.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the con-
structor (::) applied to the argument (expr, , expry), and therefore evaluates to the list whose
head is the value of expr; and whose tail is the value of expr,. The expression [expr; ;... ; expr,]
is equivalent to expr; ::...:: expr, :: [], and therefore evaluates to the list whose elements are
the values of expr; to expr,,.

Chapter 6. The Objective Caml language 111

Polymorphic variants

The expression ¢ tag-name expr evaluates to the variant value whose tag is tag-name, and whose
argument is the value of expr.

Records
The expression { fieldy = expr; ;...; field, = expr, } evaluates to the record value
{ fieldy = vy ;...; field, = vy, }, where v; is the value of expr; for i = 1,...,n. The fields field;

to field,, must all belong to the same record types; all fields belonging to this record type must
appear exactly once in the record expression, though they can appear in any order. The order in
which expr; to expr,, are evaluated is not specified.

The expression { expr with field; = expr; ;...; field, = expr, } builds a fresh record with
fields field; ... field,, equal to expr; ...expr,, and all other fields having the same value as in the
record expr. In other terms, it returns a shallow copy of the record expr, except for the fields
field; ... field,,, which are initialized to expry ...expr,,.

The expression expr, . field evaluates expr; to a record value, and returns the value associated
to field in this record value.

The expression expr; . field <- expr, evaluates expr; to a record value, which is then modified
in-place by replacing the value associated to field in this record by the value of expr,. This operation
is permitted only if field has been declared mutable in the definition of the record type. The whole
expression expr; . field <- expr, evaluates to the unit value ().

Arrays

The expression [| expry ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expr; to expr,, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr; . (expry) returns the value of element number expr, in the array denoted
by expr;. The first element has number 0; the last element has number n — 1, where n is the size
of the array. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; . (expry) <- exprs modifies in-place the array denoted by expr,, replac-
ing element number expr, by the value of exprs;. The exception Invalid_argument is raised if the
access is out of bounds. The value of the whole expression is ().

Strings

The expression expr; . [expry] returns the value of character number expry in the string denoted
by expr;. The first character has number 0; the last character has number n — 1, where n is the
length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; .[expr,] <- exprs modifies in-place the string denoted by expry,
replacing character number expr, by the value of exprs. The exception Invalid_argument is
raised if the access is out of bounds. The value of the whole expression is ().

112

6.7.4 Operators

Symbols from the class infix-symbols, as well as the keywords *, =, or and &, can appear in infix
position (between two expressions). Symbols from the class prefix-symbols can appear in prefix
position (in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as
applications of functions bound to the names corresponding to the symbols. The expression
prefix-symbol expr is interpreted as the application (prefix-symbol) expr. Similarly, the
expression expr; infix-symbol expr, is interpreted as the application (infix-symbol) expr, expr,.

The table below lists the symbols defined in the initial environment and their initial meaning.
(See the description of the standard library module Pervasive in chapter B0 for more details).
Their meaning may be changed at any time using let (infix-op) name; names =...

Chapter 6. The Objective Caml language

Operator Initial meaning

+ Integer addition.

- (infix) Integer subtraction.

- (prefix) | Integer negation.

* Integer multiplication.

/ Integer division. Raise Division_by_zero if second argument is zero.
The result is unspecified if either argument is negative.

mod Integer modulus. Raise Division_by_zero if second argument is zero.
The result is unspecified if either argument is negative.

land Bitwise logical “and” on integers.

lor Bitwise logical “or” on integers.

1xor Bitwise logical “exclusive or” on integers.

1sl Bitwise logical shift left on integers.

lsr Bitwise logical shift right on integers.

asr Bitwise arithmetic shift right on integers.

+. Floating-point addition.

-. (infix) | Floating-point subtraction.

-. (prefix) | Floating-point negation.

* Floating-point multiplication.

/. Floating-point division.

*% Floating-point exponentiation.
List concatenation.

- String concatenation.

! Dereferencing (return the current contents of a reference).

= Reference assignment (update the reference given as first argument with

the value of the second argument).

= Structural equality test.

<> Structural inequality test.

== Physical equality test.

1= Physical inequality test.

< Test “less than”.

<= Test “less than or equal”.

> Test “greater than”.

>= Test “greater than or equal”.

6.7.5 Objects

Object creation

113

When class-path evaluates to a class body, new class-path evaluates to an object containing the

instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting

the same number of arguments and returning a new object of this class.

114

Message sending

The expression expr # method-name invokes the method method-name of the object denoted by
expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This
is true for instance if expr is the name of a fresh object (let ident = new class-path...) or if there
is a type constraint. Principality of the derivation can be checked in the -principal mode.

Coercion
The type of an object can be coerced (weakened) to a supertype. The expression
(expr :> typexpr) coerces the expression expr to type typexpr. The expression

(expr : typexpry :> typexpry) coerces the expression expr from type typexpr; to type typexprs.
The former operator will sometimes fail to coerce an expression expr from a type t; to a type to
even if type t1 is a subtype of type ts: in the current implementation it only expands two levels of
type abbreviations containing objects and/or variants, keeping only recursion when it is explicit
in the class type. In case of failure, the latter operator should be used.

In a class definition, coercion to the type this class defines is the identity, as this type abbrevi-
ation is not yet completely defined.

Object duplication

An object can be duplicated using the library function Oo.copy (see section R0.21). Inside a
method, the expression {< inst-var-name = expr {; inst-var-name = expr} >} returns a copy of
self with the given instance variables replaced by the values of the associated expressions; other
instance variables have the same value in the returned object as in self.

6.8 Type and exception definitions

6.8.1 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

Chapter 6. The Objective Caml language 115

type-definition ::= type typedef {and typedef}
typedef ::= [type-params] typeconstr-name [type-information]
type-information := [type-equation] [type-representation] {type-constraint}
type-equation ::= = typexpr
type-representation ::= = constr-decl {| constr-decl}

| ={ field-decl {; field-decl} }

type-params 1= type-param
| (type-param {, type-param})
type-param ::= ’ ident
| + ident
| - ident
constr-decl ::= cconstr-name
| ncconstr-name of typexpr
field-decl ::= field-name : poly-typexpr
| mutable field-name : poly-typexpr
type-constraint ::= constraint ’ ident = typexpr

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor.

A simple definition consists in a lowercase identifier, possibly preceded by one or several type
parameters, and followed by an optional type equation, then an optional type representation, and
then a constraint clause. The identifier is the name of the type constructor being defined.

The optional type parameters are either one type variable ’ ident, for type constructors with
one parameter, or a list of type variables (’ identq, ..., ident,), for type constructors with several
parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating
that the parameter is covariant (resp. contravariant). These type parameters can appear in the type
expressions of the right-hand side of the definition, restricted eventually by a variance constraint ;
i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely,
follow the left branch of an even number of arrows), and a convariant parameter only the left side
(left branch of an odd number of arrows).

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr on the right of the = sign: one can be substituted for the other during typing. If no type
equation is given, a new type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type). If no type representation is given, nothing is assumed on the structure of the type besides
what is stated in the optional type equation.

116

The type representation = constr-decl {| constr-decl} describes a variant type. The constructor
declarations constr-decly, . . ., constr-decl,, describe the constructors associated to this variant type.
The constructor declaration ncconstr-name of typexpr declares the name ncconstr-name as a non-
constant constructor, whose argument has type typexpr. The constructor declaration cconstr-name
declares the name cconstr-name as a constant constructor. Constructor names must be capitalized.

The type representation = { field-decl {; field-decl} } describes a record type. The field dec-
larations field-decly, ..., field-decl,, describe the fields associated to this record type. The field
declaration field-name : poly-typexpr declares field-name as a field whose argument has type
poly-typexpr. The field declaration mutable field-name : poly-typexpr behaves similarly; in addi-
tion, it allows physical modification over the argument to this field. Immutable fields are covariant,
but mutable fields are neither covariant nor contravariant. Both mutable and immutable field
may have an explicitly polymorphic type. The polymorphism of the contents is statically checked
whenever a record value is created or modified. Extracted values may have their types instanciated.

The two components of a type definition, the optional equation and the optional representation,
can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
When appearing in a module signature, this definition specifies nothing on the type con-
structor, besides its number of parameters: its representation is hidden and it is assumed
incompatible with any other type.

Type abbreviation: an equation, no representation.
This defines the type constructor as an abbreviation for the type expression on the right of
the = sign.

New variant type or record type: no equation, a representation.
This generates a new type constructor and defines associated constructors or fields, through
which values of that type can be directly built or inspected.

Re-exported variant type or record type: an equation, a representation.
In this case, the type constructor is defined as an abbreviation for the type expression given
in the equation, but in addition the constructors or fields given in the representation remain
attached to the defined type constructor. The type expression in the equation part must agree
with the representation: it must be of the same kind (record or variant) and have exactly the
same constructors or fields, in the same order, with the same arguments.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate
that the type constructor is covariant or contravariant with respect to this parameter. This variance
information is used to decide subtyping relations when checking the validity of >: coercions (see
section p.7.5).

For instance, type +’a t declares t as an abstract type that is covariant in its parameter; this
means that if the type 7 is a subtype of the type o, then 7 t is a subtype of ¢ t. Similarly, type
-’a t declares that the abstract type t is contravariant in its parameter: if 7 is subtype of o, then
o t is subtype of 7 t. If no + or - variance annotation is given, the type constructor is assumed
invariant in the corresponding parameter. For instance, the abstract type declaration type ’a t
means that 7 t is neither a subtype nor a supertype of ¢ t if 7 is subtype of o.

Chapter 6. The Objective Caml language 117

The variance indicated by the + and - annotations on parameters are required only for abstract
types. For abbreviations, variant types or record types, the variance properties of the type construc-
tor are inferred from its definition, and the variance annotations are only checked for conformance
with the definition.

The construct constraint ’ ident = typexpr allows to specify type parameters. Any actual
type argument corresponding to the type parameter ident has to be an instance of typexpr (more
precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type equation
and the type declaration.

6.8.2 Exception definitions

exception-definition := exception constr-decl
| exception cconstr-name = cconstr

exception ncconstr-name = ncconstr

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

The form exception constr-decl generates a new exception, distinct from all other exceptions in
the system. The form exception name = constr gives an alternate name to an existing exception.

6.9 Classes

Classes are defined using a small language, similar to the module language.

6.9.1 Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and
type properties of classes.

class-type
class-body-type
[[?] label] typexpr => class-type

object [(typexpr)] {class-field-spec} end
class-path
[typexpr {, typexpr} 1 class-path

class-body-type

inherit class-type

val [mutable] inst-var-name : typexpr

method [private] method-name : poly-typexpr

method [private] virtual method-name : poly-typexpr
constraint typexpr = typexpr

class-field-spec

118

Simple class expressions

The expression class-path is equivalent to the class type bound to the name class-path. Similarly,
the expression [typexpr; ,...typexpr, 1 class-path is equivalent to the parametric class type
bound to the name class-path, in which type parameters have been instanciated to respectively

typexpry, ...typexpr,,.

Class function type

The class type expression typexpr -> class-type is the type of class functions (functions from
values to classes) that take as argument a value of type typexpr and return as result a class of type
class-type.

Class body type

The class type expression object [(typexpr)] {class-field-spec} end is the type of a class body. It
specifies its instance variables and methods. In this type, typexpr is matched against the self type,
therefore providing a binding for the self type.

A class body will match a class body type if it provides definitions for all the components
specified in the class type, and these definitions meet the type requirements given in the class type.
Furthermore, all methods either virtual or public present in the class body must also be present in
the class type (on the other hand, some instance variables and concrete private methods may be
omitted). A virtual method will match a concrete method, which makes it possible to forget its
implementation. An immutable instance variable will match a mutable instance variable.

Inheritance

The inheritance construct inherit class-type allows to include methods and instance variables
from other classes types. The instance variable and method types from this class type are added
into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] inst-var-name : typexpr, where
inst-var-name is the name of the instance variable and typexpr its expected type. The flag mutable
indicates whether this instance variable can be physically modified.

An instance variable specification will hide any previous specification of an instance variable of
the same name.

Method specification

The specification of a method is written method [private] method-name : poly-typexpr, where
method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic.
The flag private indicates whether the method can be accessed from outside the class.

The polymorphism may be left implicit in method specifications: any type variable which is
not bound to a class parameter and does not appear elsewhere inside the class specification will be

Chapter 6. The Objective Caml language 119

assumed to be polymorphic, and made explicit in the resulting method type. Writing an explicit
polymorphic type will disable this behaviour.

Several specification for the same method must have compatible types. Any non-private speci-
fication of a method forces it to be public.

Virtual method specification

Virtual method specification is written method [private] virtual method-name : poly-typexpr,
where method-name is the name of the method and poly-typexpr its expected type.

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equals. This
is typically used to specify type parameters: they can be that way be bound to a specified type
expression.

6.9.2 Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus
providing implementations for the specifications expressed in class types.

class-expr ::= class-path

| [typexpr {, typexpr}] class-path

| (class-expr)

| (class-expr : class-type)

| class-expr {argument}™

| fun {parameter}t -> class-expr

| 1let [rec] let-binding {and let-binding} in class-expr
| object [(pattern [: typexpr])] {class-field} end

class-field ::= inherit class-expr [as value-name]
| val [mutable] inst-var-name [: typexpr| = expr
| method [private| method-name {pattern} [: typexpr| = expr
| method [private] method-name : poly-typexpr = expr
| method [private] virtual method-name : poly-typexpr
| comnstraint typexpr = typexpr
|

initializer expr

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the ex-

pression [typexpr; , ...typexpr, 1 class-path evaluates to the parametric class bound to the name

class-path, in which type parameters have been instanciated to respectively typexpry, ... typexpr,,.
The expression (class-expr) evaluates to the same module as class-expr.

120

The expression (class-expr : class-type) checks that class-type match the type of class-expr
(that is, that the implementation class-expr meets the type specification class-type). The whole
expression evaluates to the same class as class-expr, except that all components not specified in
class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. Evaluation works
as for expression application.

Class function

The expression fun [[?] label| pattern -> class-expr evaluates to a function from values to classes.
When this function is applied to a value v, this value is matched against the pattern pattern and
the result is the result of the evaluation of class-expr in the extended environment.

Conversion from functions with default values to functions with patterns only works identically
for class functions as for normal functions.

The expression

fun parameter ... parameter, —> class-expr
is a short form for

fun parameter; —>...fun parameter, -> expr

Local definitions

The 1let and let rec constructs bind value names locally, as for the core language expressions.

Class body

The expression object (pattern [: typexpr]) {class-field} end denotes a class body. This is the
prototype for an object : it lists the instance variables and methods of an objet of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated
each time an object is created.

In a class body, the pattern (pattern [: typexpr|) is matched against self, therefore provinding
a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Inheritance

The inheritance construct inherit class-expr allows to reuse methods and instance variables from
other classes. The class expression class-expr must evaluate to a class body. The instance variables,
methods and initializers from this class body are added into the current class. The addition of a
method will override any previously defined methods of the same name.

An ancestor can be bound by prepending the construct as value-name to the inheritance con-
struct above. value-name is not a true variable and can only be used to select a method, i.e. in an
expression value-name # method-name. This gives access to the method method-name as it was

Chapter 6. The Objective Caml language 121

defined in the parent class even if it is redefined in the current class. The scope of an ancestor
binding is limited to the current class. The ancestor method may be called from a subclass but
only indirectly.

Instance variable definition

The definition val [mutable] inst-var-name = expr adds an instance variable inst-var-name whose
initial value is the value of expression expr. Several variables of the same name can be defined in
the same class. The flag mutable allows physical modification of this variable by methods.

An instance variables can only be used in the following methods and initializers of the class.

Method definition

Method definition is written method method-name = expr. The definition of a method overrides
any previous definition of this method. The method will be public (that is, not private) if any of
the definition states so.

A private method, method private method-name = expr, is a method that can only be invoked
on self (from other methods of the current class as well as of subclasses of the current class). This
invocation is performed using the expression value-name # method-name, where value-name is
directly bound to self at the beginning of the class definition. Private methods do not appear in
object types. A method may have both public and private definitions, but as soon as there is a
public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically
in programs (even for the same object). The explicit declaration may be done in one of three ways:
(1) by giving an explicit polymorphic type in the method definition, immediately after the method
name, i.e. method [private] method-name : {’ ident}t . typexpr = expr; (2) by a forward
declaration of the explicit polymorphic type through a virtual method definition; (3) by importing
such a declaration through inheritance and/or constraining the type of self.

Some special expressions are available in method bodies for manipulating instance variables and
duplicating self:

expr =
| inst-var-name <- expr
| {< [inst-var-name = expr {; inst-var-name = expr}] >}

The expression inst-var-name <- expr modifies in-place the current object by replacing the
value associated to inst-var-name by the value of expr. Of course, this instance variable must have
been declared mutable.

The expression {< [inst-var-name = expr {; inst-var-name = expr}| >} evaluates to a copy of
the current object in which the values of instance variables inst-var-names, . .., inst-var-name,, have
been replaced by the values of the corresponding expressions expry, ..., expr,,.

Virtual method definition

Method specification is written method [private| virtual method-name : poly-typexpr. It spec-
ifies whether the method is public or private, and gives its type. If the method is intended to be

122

polymorphic, the type should be explicit.

Constraints on type parameters

The construct constraint typexpr; = typexpry forces the two type expressions to be equals. This
is typically used to specify type parameters: they can be that way be bound to a specified type
expression.

Initializers

A class initializer initializer expr specifies an expression that will be evaluated when an object

will be created from the class, once all the instance variables have been initialized.

6.9.3 Class definitions

class-definition ::= class class-binding {and class-binding}
class-binding = [virtual] [[type-parameters]] class-name {pattern} [: class-type| = class-expr
type-parameters ::= ° ident {, ’ ident}

A class definition class class-binding {and class-binding} is recursive. Each class-binding
defines a class-name that can be used in the whole expression except for inheritance. It can also
be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also
binds the class type class-name to the type of the class, and defines two type abbreviations :
class-name and # class-name. The first one is the type of objects of this class, while the second is
more general as it unifies with the type of any object belonging to a subclass (see section p.4).

Virtual class
A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type,
but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations
defined by the class binding. They must be bound to actual types in the class definition using type
constraints. So that the abbreviations are well-formed, type variables of the inferred type of the
class must either be type parameters or be bound in the constraint clause.

6.9.4 Class specification
class-specification ::= class class-spec {and class-spec}

class-spec = [virtual] [[type-parameters 1] class-name : class-type

Chapter 6. The Objective Caml language 123

This is the counterpart in signatures of class definitions. A class specification matches a class
definition if they have the same type parameters and their types match.

6.9.5 Class type definitions
classtype-definition ::= class type classtype-def {and classtype-def}

classtype-def ::= [virtual] [[type-parameters]] class-name = class-body-type

A class type definition class class-name = class-body-type defines an abbreviation class-name
for the class body type class-body-type. As for class definitions, two type abbreviations class-name
and # class-name are also defined. The definition can be parameterized by some type parameters.
If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and the types they
expand to match.

6.10 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.

modtype-path

sig {specification [; ;]} end

functor (module-name : module-type) -> module-type
module-type with mod-constraint {and mod-constraint}
(module-type)

module-type

specification ::= val value-name : typexpr

| external value-name : typexpr = external-declaration
| type-definition

| exception constr-decl

| class-specification

| classtype-definition

| module module-name : module-type

| module module-name {(module-name : module-type)} : module-type
| module type modtype-name

| module type modtype-name = module-type

| open module-path

| include module-type

mod-constraint = type [type-parameters| typeconstr = typexpr
| module module-path = extended-module-path

124

6.10.1 Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path.
The expression (module-type) denotes the same type as module-type.

6.10.2 Signatures

Signatures are type specifications for structures. Signatures sig...end are collections of type
specifications for value names, type names, exceptions, module names and module type names.
A structure will match a signature if the structure provides definitions (implementations) for all
the names specified in the signature (and possibly more), and these definitions meet the type
requirements given in the signature.

For compatibility with Caml Light, an optional ;; is allowed after each specification in a
signature. The ;; has no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name : typexpr, where
value-name is the name of the value and typexpr its expected type.

The form external value-name : typexpr = external-declaration is similar, except that
it requires in addition the name to be implemented as the external function specified in
external-declaration (see chapter [[§).

Type specifications

A specification of one or several type components in a signature is written type typedef {and typedef}
and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexp and an
optional type representation = constr-decl... or = { label-decl...}. The implementation of the
type name in a matching structure must be compatible with the type expression specified in the
equation (if given), and have the specified representation (if given). Conversely, users of that
signature will be able to rely on the type equation or type representation, if given. More precisely,
we have the following four situations:

Abstract type: no equation, no representation.

Names that are defined as abstract types in a signature can be implemented in a matching
structure by any kind of type definition (provided it has the same number of type param-
eters). The exact implementation of the type will be hidden to the users of the structure.
In particular, if the type is implemented as a variant type or record type, the associated
constructors and fields will not be accessible to the users; if the type is implemented as an
abbreviation, the type equality between the type name and the right-hand side of the abbre-
viation will be hidden from the users of the structure. Users of the structure consider that
type as incompatible with any other type: a fresh type has been generated.

Type abbreviation: an equation = typexp, no representation.
The type name must be implemented by a type compatible with typexp. All users of the
structure know that the type name is compatible with typexp.

Chapter 6. The Objective Caml language 125

New variant type or record type: no equation, a representation.
The type name must be implemented by a variant type or record type with exactly the
constructors or fields specified. All users of the structure have access to the constructors
or fields, and can use them to create or inspect values of that type. However, users of the
structure consider that type as incompatible with any other type: a fresh type has been
generated.

Re-exported variant type or record type: an equation, a representation.
This case combines the previous two: the representation of the type is made visible to all
users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide
an exception with the name and arguments specified in the definition, and makes the exception
available to all users of the structure.

Class specifications

A specification of one or several classes in a signature is written class class-spec {and class-spec}
and consists of a sequence of mutually recursive definitions of class names.
Class specifications are described more precisely in section p.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def
{and classtype-def} and consists of a sequence of mutually recursive definitions of class type names.
Class type specifications are described more precisely in section (.9.5.

Module specifications

A specification of a module component in a signature is written module module-name : module-type,
where module-name is the name of the module component and module-type its expected type.
Modules can be nested arbitrarily; in particular, functors can appear as components of structures
and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name (name; : module-type;) ... (name, : module-type,) : module-type
instead of

module module-name : functor (name; : module-type;) =>...-> module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as
an abstract module type.

126

An abstract module type specification module type modtype-name allows the name
modtype-name to be implemented by any module type in a matching signature, but hides the
implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name = module-type requires the
name modtype-name to be implemented by the module type module-type in a matching signature,
but makes the equality between modtype-name and module-type apparent to all users of the
signature.

Opening a module path

The expression open module-path in a signature does not specify any components. It simply
affects the parsing of the following items of the signature, allowing components of the module
denoted by module-path to be referred to by their simple names name instead of path accesses
module-path . name. The scope of the open stops at the end of the signature expression.

Including a signature

The expression include module-type in a signature performs textual inclusion of the components
of the signature denoted by module-type. It behaves as if the components of the included signature
were copied at the location of the include. The module-type argument must refer to a module
type that is a signature, not a functor type.

6.10.3 Functor types

The module type expression functor (module-name : module-type;) -> module-type, is the
type of functors (functions from modules to modules) that take as argument a module of type
module-type; and return as result a module of type module-type,;. The module type module-type,
can use the name module-name to refer to type components of the actual argument of the functor.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

6.10.4 The with operator

Assuming module-type denotes a signature, the expression module-type with mod-constraint
{and mod-constraint} denotes the same signature where type equations have been added to some
of the type specifications, as described by the constraints following the with keyword. The con-
straint type [type-parameters| typeconstr = typexp adds the type equation = typexp to the spec-
ification of the type component named typeconstr of the constrained signature. The constraint
module module-path = extended-module-path adds type equations to all type components of the
sub-structure denoted by module-path, making them equivalent to the corresponding type compo-
nents of the structure denoted by extended-module-path.
For instance, if the module type name S is bound to the signature

sig type t module M: (sig type u end) end
then S with type t=int denotes the signature

sig type t=int module M: (sig type u end) end

Chapter 6. The Objective Caml language 127

and S with module M = N denotes the signature
sig type t module M: (sig type u=N.u end) end
A functor taking two arguments of type S that share their t component is written

functor (A: S) (B: S with type t = A.t)

6.11 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types.

module-path

struct {definition [;;]} end

functor (module-name : module-type) -> module-expr
module-expr (module-expr)

(module-expr)

(module-expr : module-type)

module-expr

definition ::= 1let [rec] let-binding {and let-binding}

external value-name : typexpr = external-declaration
type-definition

exception-definition

class-definition

classtype-definition

module module-name {(module-name : module-type)} [: module-type]
= module-expr

| module type modtype-name = module-type

| open module-path

| include module-expr

6.11.1 Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression (module-expr) evaluates to the same module as module-expr.

The expression (module-expr : module-type) checks that the type of module-expr is a
subtype of module-type, that is, that all components specified in module-type are implemented
in module-expr, and their implementation meets the requirements given in module-type. In other
terms, it checks that the implementation module-expr meets the type specification module-type.
The whole expression evaluates to the same module as module-expr, except that all components
not specified in module-type are hidden and can no longer be accessed.

128

6.11.2 Structures

Structures struct...end are collections of definitions for value names, type names, exceptions,
module names and module type names. The definitions are evaluated in the order in which they
appear in the structure. The scope of the bindings performed by the definitions extend to the end
of the structure. As a consequence, a definition may refer to names bound by earlier definitions in
the same structure.

For compatibility with toplevel phrases (chapter) and with Caml Light, an optional ;; is
allowed after each definition in a structure. The ;; has no semantic meaning. Also for compatibility,
;5 expr is allowed as a component of a structure, meaning let _ = expr, i.e. evaluate expr for its
side-effects.

Value definitions

A value definition let [rec] let-binding {and let-binding} bind value names in the same way as
a let...in... expression (see section p.7.1). The value names appearing in the left-hand sides of
the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name : typexpr = external-declaration implements
value-name as the external function specified in external-declaration (see chapter [[§).

Type definitions
A definition of one or several type components is written type typedef {and typedef} and consists
of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name = constr.

Class definitions

A definition of one or several classes is written class class-binding {and class-binding} and consists
of a sequence of mutually recursive definitions of class names. Class definitions are described more
precisely in section (.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def {and classtype-def} and
consists of a sequence of mutually recursive definitions of class type names. Class type definitions
are described more precisely in section b.9.5.

Module definitions

The basic form for defining a module component is module module-name = module-expr, which
evaluates module-expr and binds the result to the name module-name.
One can write

module module-name : module-type = module-expr

Chapter 6. The Objective Caml language 129

instead of
module module-name = (module-expr : module-type).
Another derived form is
module module-name (name; : module-type;) ... (name, : module-type,,) = module-expr
which is equivalent to

module module-name = functor (name; : module-type;) =>...-> module-expr

Module type definitions

A definition for a module type is written module type modtype-name = module-type. It binds the
name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any
bindings. It simply affects the parsing of the following items of the structure, allowing components
of the module denoted by module-path to be referred to by their simple names name instead of path
accesses module-path . name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include,, module-expr in a structure re-exports in the current structure all defi-
nitions of the structure denoted by module-expr. For instance, if the identifier S is bound to the
module

struct type t = int let x = 2 end
the module expression
struct include S let y = (x + 1 : t) end
is equivalent to the module expression
struct type t = int let x =2 lety = (x+ 1 : t) end

The difference between open and include is that open simply provides short names for the com-
ponents of the opened structure, without defining any components of the current structure, while
include also adds definitions for the components of the included structure.

6.11.3 Functors
Functor definition

The expression functor (module-name : module-type) -> module-expr evaluates to a functor
that takes as argument modules of the type module-type,, binds module-name to these modules,
evaluates module-expr in the extended environment, and returns the resulting modules as results.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

130

Functor application

The expression module-expr; (module-expry) evaluates module-expr; to a functor and
module-expry to a module, and applies the former to the latter. The type of module-expr, must
match the type expected for the arguments of the functor module-expr;.

6.12 Compilation units

unit-interface = {specification [; ;]}

unit-implementation := {definition [;;]}

Compilation units bridge the module system and the separate compilation system. A compila-
tion unit is composed of two parts: an interface and an implementation. The interface contains a
sequence of specifications, just as the inside of a sig...end signature expression. The implemen-
tation contains a sequence of definitions, just as the inside of a struct...end module expression.
A compilation unit also has a name unit-name, derived from the names of the files containing the
interface and the implementation (see chapter § for more details). A compilation unit behaves
roughly as the module definition

module unit-name : sig unit-interface end = struct unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular
modules. For instance, if U is a compilation unit that defines a type t, other compilation units can
refer to that type under the name U.t; they can also refer to U as a whole structure. Except for
names of other compilation units, a unit interface or unit implementation must not have any other
free variables. In other terms, the type-checking and compilation of an interface or implementation
proceeds in the initial environment

name; : sig interface; end...name, : sig interface, end

where name ... name,, are the names of the other compilation units available in the search path
(see chapter [for more details) and interface; . .. interface, are their respective interfaces.

Chapter 7

Language extensions

This chapter describes syntactic extensions and convenience features that are implemented in Ob-
jective Caml, but not described in the Objective Caml reference manual.

7.1 Streams and stream parsers

Streams and stream parsers are no longer part of the Objective Caml language, but available
through a CamlP4 syntax extension. See the CamlP4 reference manual for more information.
Objective Caml programs that use streams and stream parsers can be compiled with the
-pp camlp4o option to ocamlc and ocamlopt. For interactive use, run ocaml and issue the
#load "camlpdo.cma";; command.

7.2 Range patterns

In patterns, Objective Caml recognizes the form *> ¢ > .. > d ’ (two character literals separated
by ..) as shorthand for the pattern

’C,l,Cl’l’CQ’l...l’Cn’l’d’
where ¢1, ¢, ..., ¢, are the characters that occur between ¢ and d in the ASCII character set. For
instance, the pattern >0’..°9° matches all characters that are digits.

7.3 Assertion checking

Objective Caml supports the assert construct to check debugging assertions. The expression
assert expr evaluates the expression expr and returns () if expr evaluates to true. Otherwise,
the exception Assert_failure is raised with the source file name and the location of expr as
arguments. Assertion checking can be turned off with the -noassert compiler option.

As a special case, assert false is reduced to raise (Assert_failure ...), which is poly-
morphic (and is not turned off by the -noassert option).

131

132

7.4 Deferred computations

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of
expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation will
be performed the first time Lazy . force is applied to the value v, returning the actual value of expr.
Subsequent applications of Lazy.force to v do not evaluate expr again. For more information, see
the description of module Lazy in the standard library (section P0.13).

7.5 Local modules

The expression let module module-name = module-expr in expr locally binds the module expres-
sion module-expr to the identifier module-name during the evaluation of the expression expr. It
then returns the value of expr. For example:

let remove_duplicates comparison_fun string list =
let module StringSet =
Set.Make(struct type t = string
let compare = comparison_fun end) in
StringSet.elements
(List.fold_right StringSet.add string list StringSet.empty)

7.6 Grouping in integer and floating-point literals

In integer and floating-point literals, the character _ (underscore) can be used to separate groups of
digits, as in 1_000_000, 0x45_FF, or 1_234.567_89. The underscore characters are simply ignored
when reading the literal.

Part 111

The Objective Caml tools

133

Chapter 8

Batch compilation (ocamlc)

This chapter describes the Objective Caml batch compiler ocamlc, which compiles Caml source
files to bytecode object files and link these object files to produce standalone bytecode executable
files. These executable files are then run by the bytecode interpreter ocamlrun.

8.1 Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. Inter-
faces specify the names exported by compilation units: they declare value names with their
types, define public data types, declare abstract data types, and so on. From the file z.ml11,
the ocamlc compiler produces a compiled interface in the file z.cmi.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.ml, the ocamlc compiler
produces compiled object bytecode in the file z. cmo.

If the interface file z.m1i exists, the implementation x.ml is checked against the corresponding
compiled interface z.cmi, which is assumed to exist. If no interface z.mli is provided, the
compilation of x.ml produces a compiled interface file x.cmi in addition to the compiled
object code file z.cmo. The file z.cmi produced corresponds to an interface that exports
everything that is defined in the implementation z.ml.

e Arguments ending in .cmo are taken to be compiled object bytecode. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
Objective Caml standard library, to produce a standalone executable program. The order in
which .cmo and .ml arguments are presented on the command line is relevant: compilation
units are initialized in that order at run-time, and it is a link-time error to use a component
of a unit before having initialized it. Hence, a given z.cmo file must come before all . cmo files
that refer to the unit z.

135

136

e Arguments ending in .cma are taken to be libraries of object bytecode. A library of object
bytecode packs in a single file a set of object bytecode files (.cmo files). Libraries are built
with ocamlc -a (see the description of the —a option below). The object files contained in the
library are linked as regular .cmo files (see above), in the order specified when the .cma file
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

e Arguments ending in .c are passed to the C compiler, which generates a .o object file. This
object file is linked with the program if the ~custom flag is set (see the description of -~custom
below).

e Arguments ending in .o or .a (.obj or .1lib under Windows) are assumed to be C object
files and libraries. They are passed to the C linker when linking in -custom mode (see the
description of -custom below).

e Arguments ending in .so (.d11 under Windows) are assumed to be C shared libraries (DLLs).
During linking, they are searched for external C functions referenced from the Caml code,
and their names are written in the generated bytecode executable. The run-time system
ocamlrun then loads them dynamically at program start-up time.

The output of the linking phase is a file containing compiled bytecode that can be executed by
the Objective Caml bytecode interpreter: the command named ocamlrun. If caml.out is the name
of the file produced by the linking phase, the command

ocamlrun caml.out arg; arg, ... arg,

executes the compiled code contained in caml.out, passing it as arguments the character strings
arg; to arg,,. (See chapter [[(J for more details.)
On most systems, the file produced by the linking phase can be run directly, as in:

./caml.out arg; argy ... arg,

The produced file has the executable bit set, and it manages to launch the bytecode interpreter by
itself.

8.2 Options
The following command-line options are recognized by ocamlc.

-a Build a library (.cma file) with the object files (. cmo files) given on the command line, instead
of linking them into an executable file. The name of the library can be set with the -o option.
The default name is library.cma.

If ~custom, -cclib or -ccopt options are passed on the command line, these options are
stored in the resulting .cma library. Then, linking with this library automatically adds back
the —custom, —cclib and -ccopt options as if they had been provided on the command line,
unless the -noautolink option is given.

Chapter 8. Batch compilation (ocamlc) 137

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker called by ocamlc -custom and as the C compiler for compiling .c
source files.

-cclib -llibname
Pass the -1libname option to the C linker when linking in “custom runtime” mode (see the
-custom option). This causes the given C library to be linked with the program.

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode
(see the -custom option). For instance, -ccopt -Ldir causes the C linker to search for C
libraries in directory dir.

—custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, ocamlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is larger, but it can be executed directly, even
if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables
static linking of Caml code with user-defined C functions, as described in chapter [[8.

Unix:

Never use the strip command on executables produced by ocamlc -custom.
This would remove the bytecode part of the executable.

-d11ib -llibname
Arrange for the C shared library dlllibname.so (dlllibname.d1ll under Windows) to be
loaded dynamically by the run-time system ocamlrun at program start-up time.

-dllpath dir
Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared
libraries are searched in the standard search path (the one corresponding to the -I option).
The -d1lpath option simply stores dir in the produced executable file, where ocamlrun can
find it and exploit it as described in section [0.3.

-g Add debugging information while compiling and linking. This option is required in order to
be able to debug the program with ocamldebug (see chapter [L(]).

-i Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). This can be useful to check the types inferred
by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing
an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to
a .mli file, and edit that file to remove all declarations of unexported names.

138

-1 directory

Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files (.cmo), libraries (.cma), and C libraries specified with -cclib
-1xxx. By default, the current directory is searched first, then the standard library directory.
Directories added with -I are searched after the current directory, in the order in which they
were given on the command line, but before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-impl filename

Compile the file filename as an implementation file, even if its extension is not .ml.

-intf filename

Compile the file filename as an interface file, even if its extension is not .mli.

-linkall

Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (-a flag), setting the -1inkall flag forces
all subsequent links of programs involving that library to link all the modules contained in
the library.

-make-runtime

Build a custom runtime system (in the file specified by option -o) incorporating the C object
files and libraries given on the command line. This custom runtime system can be used later
to execute bytecode executables produced with the ocamlc -use-runtime runtime-name
option. See section [[8.1.9 for more information.

-noassert

Turn assertion checking off: assertions are not compiled. This flag has no effect when linking
already compiled files.

-noautolink

When linking .cma libraries, ignore -custom, —cclib and -ccopt options potentially con-
tained in the libraries (if these options were given when building the libraries). This can be
useful if a library contains incorrect specifications of C libraries or C options; in this case,
during linking, set -noautolink and pass the correct C libraries and options on the command
line.

-nolabels

Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-o exec-file

Specify the name of the output file produced by the linker. The default output name is a. out,
in keeping with the Unix tradition. If the -a option is given, specify the name of the library
produced. If the —output-obj option is given, specify the name of the output file produced.

Chapter 8. Batch compilation (ocamlc) 139

—output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is useful
to wrap Caml code as a C library, callable from any C program. See chapter [[§, section [8.7-3.
The name of the output object file is camlprog.o by default; it can be set with the —o option.

-pack
Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that
combines the object files given on the command line, making them appear as sub-modules of
the output .cmo file. The name of the output .cmo file must be given with the -o option.
For instance,

ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo

generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-
modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c.cmo.
These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards. The name of this file is built
from the basename of the source file with the extension .ppi for an interface (.mli) file and
.ppo for an implementation (.ml) file.

-principal
Check information path during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even if
internal algorithms change. All programs accepted in -principal mode are also accepted in
default mode with equivalent types, but different binary signatures, and this may slow down
type checking; yet this is a good idea to use it once before publishing source code.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

—thread
Compile or link multithreaded programs, in combination with the threads library described
in chapter 4. What this option actually does is select a special, thread-safe version of the
standard library.

-unsafe
Turn bound checking off on array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can
happen if the program accesses an array or string outside of its bounds.

-use-runtime runtime-name
Generate a bytecode executable file that can be executed on the custom runtime system

140

runtime-name, built earlier with ocamlc -make-runtime runtime-name. See section [8.1.4
for more information.

-v Print the version number of the compiler and the location of the standard library directory,
then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the C
compiler and linker in -custom mode. Useful to debug C library problems.

-version

Print the version number of the compiler in short form (e.g. 3.06), then exit.

-w warning-list

Enable or disable warnings according to the argument warning-list. The argument is a string
of one or several characters, with the following meaning for each character:

A/a enable/disable all warnings.

C/c enable/disable warnings for suspicious comments.

D/d enable/disable warnings for deprecated features.

F/f enable/disable warnings for partially applied functions (i.e. £ x; expr where the appli-
cation £ x has a function type).

L/1 enable/disable warnings for labels omitted in application.
M/m enable/disable warnings for overriden methods.
P/p enable/disable warnings for partial matches (missing cases in pattern matchings).

S/s enable/disable warnings for statements that do not have type unit (e.g. exprl; expr2
when exprl does not have type unit).

U/u enable/disable warnings for unused (redundant) match cases.
V/v enable/disable warnings for hidden instance variables.

X/x enable/disable all other warnings.

The default setting is -w Al (all warnings but labels enabled).

-warn-error warning-list

Turn the warnings indicated in the argument warning-list into errors. The compiler will stop
on an error as soon as one of these warnings is emitted, instead of going on. The warning-
list is a string of one or several characters, with the same meaning as for the -w option:
an uppercase character turns the corresponding warning into an error, a lowercase character
leaves it as a warning. The default setting is ~-warn-error a (all warnings are not treated as
errors).

-where

Print the location of the standard library, then exit.

Chapter 8. Batch compilation (ocamlc) 141

8.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corre-
sponding to compilation units and the names of the files that contain their compiled interface and
compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source
file (.m1 or .mli file). That is, it strips the leading directory name, if any, as well as the .ml or
.mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that
module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an
implementation for the module named Misc. Other compilation units may refer to components
defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use
unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file.
Hence, the compiled files always have their base name equal (modulo capitalization of the first
letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search
path for a file mod.cmi (note lowercasing of first letter) and loads the compiled interface contained
in that file. As a consequence, renaming .cmi files is not advised: the name of a .cmi file must
always correspond to the name of the compilation unit it implements. It is admissible to move
them to another directory, if their base name is preserved, and the correct -I options are given to
the compiler. The compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created.
That’s because the linker never attempts to find by itself the .cmo file that implements a module
with a given name: it relies instead on the user providing the list of .cmo files by hand.

8.4 Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file
(.cmo file). If filename has the format mod.cmi, this means you are trying to compile a
file that references identifiers from module mod, but you have not yet compiled an interface
for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface
mod.cmi.

If filename has the format mod.cmo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename
The compiler produces this error when it tries to read a compiled interface file (. cmi file) that
has the wrong structure. This means something went wrong when this .cmi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.

142

This error can also appear if a .cmi file is modified after its creation by the compiler. Fix:
remove the corrupted .cmi file, and rebuild it.

This expression has type t;, but is used with type t
This is by far the most common type error in programs. Type t; is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type t is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t; and t; are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types #; and ty are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two
type constructors can have the same name, but actually represent different types. This can
happen if a type constructor is redefined. Example:

type foo = A | B

let f = function A -> 0 | B -> 1
type foo = C | D

£fC

This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, ¢, contains type variables that cannot be generalized
Type variables (’a, b, ...) in a type ¢ can be in either of two states: generalized (which
means that the type ¢ is valid for all possible instantiations of the variables) and not gener-
alized (which means that the type ¢ is valid only for one instantiation of the variables). In a
let binding let name = expr, the type-checker normally generalizes as many type variables
as possible in the type of ezpr. However, this leads to unsoundness (a well-typed program
can crash) in conjunction with polymorphic mutable data structures. To avoid this, general-
ization is performed at let bindings only if the bound expression ezpr belongs to the class of
“syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values,
etc. In all other cases (for instance, ezpr is a function application), a polymorphic mutable
could have been created and generalization is therefore turned off.

Non-generalized type variables in a type cause no difficulties inside a given structure or
compilation unit (the contents of a .ml file, or an interactive session), but they cannot be
allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used
inconsistently later. Therefore, the compiler flags an error when a structure or compilation
unit defines a value name whose type contains non-generalized type variables. There are two
ways to fix this error:

e Add a type constraint or a .mli file to give a monomorphic type (without type variables)
to name. For instance, instead of writing

let sort_int_list = Sort.list (<)
(* inferred type ’a list -> ’a list, with ’a not generalized *)

write

Chapter 8. Batch compilation (ocamlc) 143

let sort_int_list = (Sort.list (<) : int list -> int list);;

e If you really need name to have a polymorphic type, turn its defining expression into a
function by adding an extra parameter. For instance, instead of writing

let map_length = List.map Array.length
(* inferred type ’a array list -> int list, with ’a not generalized *)

write

let map_length 1lv = List.map Array.length 1v

Reference to undefined global mod

This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the compilation unit named mod on the
command line (typically, the file named mod. cmo, or a library containing that file). Fix: add
the missing .ml or .cmo file to the command line. Or, you have provided an implementation
for the module named mod, but it comes too late on the command line: the implementation
of mod must come before all bytecode object files that reference mod. Fix: change the order
of .m1 and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function
Mod1.f. In this case, no matter what permutations you perform on the command line, the
program will be rejected at link-time. Fixes:

e Put f and g in the same module.

e Parameterize one function by the other. That is, instead of having

modl.ml: let £ x = . Mod2.g ...
mod2.ml: let gy = . Modl.f

define

modl.ml: let fgx=...g ...

mod2.ml: let rec gy = ... Modl.f g ...

and link mod1.cmo before mod2.cmo.

e Use a reference to hold one of the two functions, as in :

modl.ml: let forward_g =
ref ((fun x -> failwith "forward_g") : <type>)
let £ x = ... !forward_g ...
mod2.ml: let gy = . Modl.f
let _ = Modl.forward_g := g

This will not work if g is a polymorphic function, however.

The external function f is not available
This error appears when trying to link code that calls external functions written in C. As
explained in chapter [[§, such code must be linked with C libraries that implement the required
f C function. If the C libraries in question are not shared libraries (DLLs), the code must be

144

linked in “custom runtime” mode. Fix: add the required C libraries to the command line,
and possibly the —custom option.

Chapter 9

The toplevel system (ocaml)

This chapter describes the toplevel system for Objective Caml, that permits interactive use of the
Objective Caml system through a read-eval-print loop. In this mode, the system repeatedly reads
Caml phrases from the input, then typechecks, compile and evaluate them, then prints the inferred
type and result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The
toplevel input consists in one or several toplevel phrases, with the following syntax:

toplevel-input ::= {toplevel-phrase} ;;
toplevel-phrase definition
expr

ident directive-argument

definition ::= let [rec] let-binding {and let-binding}
| external value-name : typexpr = external-declaration
| type-definition

| exception-definition

| module module-name [: module-type] = module-expr

| module type modtype-name = module-type

|

open module-path

directive-argument := nothing

| string-literal

| integer-literal
|

value-path

A phrase can consist of a definition, similar to those found in implementations of compilation
units or in struct...end module expressions. The definition can bind value names, type names,
an exception, a module name, or a module type name. The toplevel system performs the bindings,
then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a open directive (see section p.11]), or a value expression (sec-
tion p.1). Expressions are simply evaluated, without performing any bindings, and the value of the
expression is printed.

145

146

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These
directives control the behavior of the toplevel; they are listed below in section J.2.

Unix:
The toplevel system is started by the command ocaml, as follows:

ocaml options objects # interactive mode
ocaml options objects scriptfile # script mode

options are described below. objects are filenames ending in .cmo or .cma; they are loaded
into the interpreter immediately after options are set. scriptfile is any file name not ending
in .cmo or .cma.

If no scriptfile is given on the command line, the toplevel system enters interactive mode:
phrases are read on standard input, results are printed on standard output, errors on stan-
dard error. End-of-file on standard input terminates ocaml (see also the #quit directive in

section P.2).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current
directory, its contents are read as a sequence of Objective Caml phrases and executed as per
the #use directive described in section P.2. The evaluation outcode for each phrase are not
displayed.

The toplevel system does not perform line editing, but it can easily be used in conjunction
with an external line editor such as fep; just run fep -emacs ocaml or fep -vi ocaml.
Another option is to use ocaml under Gnu Emacs, which gives the full editing power of
Emacs (see the subdirectory emacs of the Objective Caml distribution).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing ctrl-C (or, more precisely, by sending the sigintr signal to the ocaml process).
The toplevel then immediately returns to the # prompt.

If scriptfile is given on the command-line to ocaml, the toplevel system enters script mode:
the contents of the file are read as a sequence of Objective Caml phrases and executed, as per
the #use directive (section P.7). The outcome of the evaluation is not printed. On reaching
the end of file, the ocaml command exits immediately. No commands are read from standard
input. Sys.argv is transformed, ignoring all Objective Caml parameters, and starting with
the script file name in Sys.argv. (0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it is theoretically
possible to make the script itself executable and put as first line #!/usr/local/bin/ocaml,
thus calling the toplevel system automatically when the script is run. However, ocaml itself is
a #! script on most installations of Objective Caml, and Unix kernels usually do not handle
nested #! scripts.

Windows:
In addition to the text-only command ocaml.exe, which works exactly as under Unix (see
above), a graphical user interface for the toplevel is available under the name ocamlwin.exe.
It should be launched from the Windows file manager or program manager.

Chapter 9. The toplevel system (ocaml) 147

The “Terminal” windows is split in two panes. Phrases are entered and edited in the bottom
pane. The top pane displays a copy of the input phrases as they are processed by the Objective
Caml toplevel, interspersed with the toplevel responses. The “Return” key sends the contents
of the bottom pane to the Objective Caml toplevel. The “Enter” key inserts a newline without
sending the contents of the Input window. (This can be configured with the “Preferences”
menu item.)

The contents of the input window can be edited at all times, with the standard Windows
interface. An history of previously entered phrases is maintained and displayed in a separate
window.

To quit the Camlwin application, either select “Quit” from the “File” menu, or use the quit
function described below.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by selecting the “Interrupt Objective Caml” menu item. This goes back to the # prompt.

9.1 Options
The following command-line options are recognized by the ocaml command.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, then the standard library directory. Directories
added with I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

Directories can also be added to the search path once the toplevel is running with the
#directory directive (section P.2).

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-principal
Check information path during type-checking, to make sure that all types are derived in a
principal way. All programs accepted in —-principal mode are also accepted in default mode
with equivalent types.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-unsafe
See the corresponding option for ocamlc, chapter §. Turn bound checking off on array and
string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are

148

therefore slightly faster, but unsafe: anything can happen if the program accesses an array
or string outside of its bounds.

-w warning-list
Enable or disable warnings according to the argument warning-list.

Unix:
The following environment variables are also consulted:

LC_CTYPE
If set to is0_8859_1, accented characters (from the ISO Latin-1 character set) in string
and character literals are printed as is; otherwise, they are printed as decimal escape
sequences (\ddd).

TERM
When printing error messages, the toplevel system attempts to underline visually the
location of the error. It consults the TERM variable to determines the type of output
terminal and look up its capabilities in the terminal database.

9.2 Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program
execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive,
and must not be confused with the # prompt displayed by the interactive loop. For instance, typing
#quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

#quit; ;
Exit the toplevel loop and terminate the ocaml command.

#labels bool; ;
Ignore labels in function types if argument is false, or switch back to default behaviour
(commuting style) if argument is true.

#warnings "warning-list"; ;
Enable or disable warnings according to the argument.

#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.

#cd "dir-name";;
Change the current working directory.

#load "file-name";;
Load in memory a bytecode object file (.cmo file) produced by the batch compiler ocamlc.

#use "file-name"; ;
Read, compile and execute source phrases from the given file. This is textual inclusion:
phrases are processed just as if they were typed on standard input. The reading of the file
stops at the first error encountered.

Chapter 9. The toplevel system (ocaml) 149

#install_printer printer-name; ;
This directive registers the function named printer-name (a value path) as a printer for values
whose types match the argument type of the function. That is, the toplevel loop will call
printer-name when it has such a value to print.

The printing function printer-name should have type Format.formatter -> t => unit, where
t is the type for the values to be printed, and should output its textual representation for the
value of type ¢ on the given formatter, using the functions provided by the Format library. For
backward compatibility, printer-name can also have type t —=> unit and should then output
on the standard formatter, but this usage is deprecated.

#remove_printer printer-name; ;
Remove the named function from the table of toplevel printers.

#trace function-name; ;
After executing this directive, all calls to the function named function-name will be “traced”.
That is, the argument and the result are displayed for each call, as well as the exceptions
escaping out of the function, raised either by the function itself or by another function it calls.
If the function is curried, each argument is printed as it is passed to the function.

#untrace function-name; ;
Stop tracing the given function.

#untrace_all;;
Stop tracing all functions traced so far.

#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth exceeds
n are printed as ... (ellipsis).

#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are printed
as ... (ellipsis).

9.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms
as for separately compiled units: either by using qualified names (Modulename.localname), or by
using the open construct and unqualified names (see section B.J).

However, before referencing another compilation unit, an implementation of that unit must be
present in memory. At start-up, the toplevel system contains implementations for all the modules in
the the standard library. Implementations for user modules can be entered with the #load directive
described above. Referencing a unit for which no implementation has been provided results in the
error “Reference to undefined global ‘..." 7.

Note that entering open mod merely accesses the compiled interface (.cmi file) for mod, but
does not load the implementation of mod, and does not cause any error if no implementation of mod
has been loaded. The error “reference to undefined global mod’ will occur only when executing a
value or module definition that refers to mod.

150

9.4 Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.cmi, this means you have referenced the compilation unit
mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first,
to create the compiled interface mod. cmi.

If filename has the format mod. cmo, this means you are trying to load with #load a bytecode
object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: use the #directory directive to add the correct
directories to the search path.

This expression has type t;, but is used with type t
See section B4.

Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See
section B3 above.

9.5 Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds Objective Caml toplevels that contain user code preloaded at
start-up.

The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with
the object files that implement the Objective Caml toplevel. The typical use is:

ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the Objective Caml toplevel system, plus
the code from the three .cmo files. This toplevel is directly executable and is started by:

./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo is
already loaded in memory, just as if you had typed:

#load "foo.cmo";;
#load "bar.cmo";;
#load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still have
to do

open Foo;;

yourself, if this is what you wish.

Chapter 9. The toplevel system (ocaml) 151

9.6 Options
The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -1libname option to the C linker when linking in “custom runtime” mode. See the
corresponding option for ocamlc, in chapter B.

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode.
See the corresponding option for ocamlc, in chapter B.

-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter B.

-I directory
Add the given directory to the list of directories searched for compiled object code files (. cmo
and .cma).

-o exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.

152

Chapter 10

The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc
command.

10.1 Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually ex-
ecutes bytecode files; the memory allocator and garbage collector; and a set of C functions that
implement primitive operations such as input/output.

The usage for ocamlrun is:

ocamlrun options bytecode-executable arg, ... arg,

The first non-option argument is taken to be the name of the file containing the executable bytecode.
(That file is searched in the executable path as well as in the current directory.) The remaining
arguments are passed to the Caml program, in the string array Sys.argv. Element 0 of this array
is the name of the bytecode executable file; elements 1 to n are the remaining arguments arg; to
arg,,.

As mentioned in chapter B, the bytecode executable files produced by the ocamlc command are
self-executable, and manage to launch the ocamlrun command on themselves automatically. That
is, assuming caml.out is a bytecode executable file,

caml.out arg; ... arg,
works exactly as
ocamlrun caml.out arg; ... arg,

Notice that it is not possible to pass options to ocamlrun when invoking caml.out directly.

Windows:
Under several versions of Windows, bytecode executable files are self-executable only if their
name ends in .exe. It is recommended to always give .exe names to bytecode executables,
e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog

153

154

10.2 Options
The following command-line options are recognized by ocamlrun.

-b When the program aborts due to an uncaught exception, print a detailed “back trace” of the
execution, showing where the exception was raised and which function calls were outstanding
at this point. The back trace is printed only if the bytecode executable contains debugging
information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent
to setting the b flag in the 0CAMLRUNPARAM environment variable (see below).

-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search
path (see section [[0.3).

-v Direct the memory manager to print some progress messages on standard error. This is
equivalent to setting v=63 in the 0CAMLRUNPARAM environment variable (see below).

The following environment variables are also consulted:

CAML_LD_LIBRARY_PATH
Additional directories to search for dynamically-loaded libraries (see section [[0.3).

OCAMLLIB
The directory containing the Objective Caml standard library. (If OCAMLLIB is not set,
CAMLLIB will be used instead.) Used to locate the 1d.conf configuration file for dynamic
loading (see section [[0.3). If not set, default to the library directory specified when compiling
Objective Caml.

OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If O0CAMLRUNPARAM is
not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter
specifications. A parameter specification is an option letter followed by an = sign, a decimal
number, and an optional multiplier. There are nine options, six of which correspond to the
fields of the control record documented in section POT0.

b (backtrace) Trigger the printing of a stack backtrace when an uncaught exception aborts
the program. This option takes no argument.

p (parser trace) Turn on debugging support for ocamlyacc-generated parsers. When this
option is on, the pushdown automaton that executes the parsers prints a trace of its
actions. This option takes no argument.

minor_heap_size) Size of the minor heap.

0

major_heap_increment) Minimum size increment for the major heap.

[y

max_overhead) The heap compaction trigger setting.

< oo

verbose) What GC messages to print to stderr. This is a sum of values selected from

(
(
(space_overhead) The major GC speed setting.
(
(
the following:

Chapter 10. The runtime system (ocamlrun) 155

PATH

1
h

1 (= 0b0000000001)
Start of major GC cycle.

2 (= 0b0000000010)
Minor collection and major GC slice.

4 (= 0b0000000100)
Growing and shrinking of the heap.

8 (= 0b0000001000)
Resizing of stacks and memory manager tables.

16 (= 0b0000010000)
Heap compaction.

32 (= 0b0000100000)
Change of GC parameters.

64 (= 0b0001000000)
Computation of major GC slice size.

128 (= 0b0010000000)
Calling of finalization functions

256 (= 0b0100000000)
Startup messages (loading the bytecode executable file, resolving shared libraries).

(stack_limit) The limit (in words) of the stack size.

The initial size of the major heap (in words).

The multiplier is k, M, or G, for multiplication by 20, 220 and 239 respectively. For example,
on a 32-bit machine, under bash the command

export OCAMLRUNPARAM=’b,s=256k,v=1’

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor
heap size to 1 megabyte and print a message at the start of each major GC cycle.

List of directories searched to find the bytecode executable file.

10.3 Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries
(DLLs) providing additional C primitives beyond those provided by the standard runtime system.
The names for these libraries are provided at link time as described in section [[8.1.4), and recorded
in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to
their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order

indicated:

1. Directories specified on the ocamlrun command line with the -I option.

2. Directories specified in the CAML_LD_LIBRARY_PATH environment variable.

156

3. Directories specified at link-time via the ~d11lpath option to ocamlc. (These directories are
recorded in the bytecode executable file.)

4. Directories specified in the file 1d.conf. This file resides in the Objective Caml standard li-
brary directory, and lists directory names (one per line) to be searched. Typically, it contains
only one line naming the stublibs subdirectory of the Objective Caml standard library di-
rectory. Users can add there the names of other directories containing frequently-used shared
libraries; however, for consistency of installation, we recommend that shared libraries are
installed directly in the system stublibs directory, rather than adding lines to the 1d.conf
file.

5. Default directories searched by the system dynamic loader. Under Unix, these generally
include /1ib and /usr/lib, plus the directories listed in the file /etc/1d.so.conf and the
environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system
directories, plus the directories listed in the PATH environment variable.

10.4 Common errors
This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second
possibility indicates that Objective Caml has not been properly installed on your system.

Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the
executable path. Check that Objective Caml has been properly installed on your system.

Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument
to ocamlrun) either does not exist, or is not a valid executable bytecode file.

Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably
it has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception

The program being executed contains a “stray” exception. That is, it raises an exception
at some point, and this exception is never caught. This causes immediate termination of
the program. The name of the exception is printed, along with its string and integer argu-
ments (arguments of more complex types are not correctly printed). To locate the context
of the uncaught exception, compile the program with the -g option and either run it again
under the ocamldebug debugger (see chapter [[f]), or run it with ocamlrun -b or with the
OCAMLRUNPARAM environment variable set to b=1.

Chapter 10. The runtime system (ocamlrun) 157

Out of memory
The program being executed requires more memory than available. Either the program builds
excessively large data structures; or the program contains too many nested function calls, and
the stack overflows. In some cases, your program is perfectly correct, it just requires more
memory than your machine provides. In other cases, the “out of memory” message reveals an
error in your program: non-terminating recursive function, allocation of an excessively large
array or string, attempts to build an infinite list or other data structure, ...

To help you diagnose this error, run your program with the -v option to ocamlrun, or
with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of “Growing
’ messages, this is probably a looping recursive function. If it displays lots of
“Growing heap...” messages, with the heap size growing slowly, this is probably an attempt
to construct a data structure with too many (infinitely many?) cells. If it displays few
“Growing heap...” messages, but with a huge increment in the heap size, this is probably
an attempt to build an excessively large array or string.

stack...’

158

Chapter 11

Native-code compilation (ocamlopt)

This chapter describes the Objective Caml high-performance native-code compiler ocamlopt, which
compiles Caml source files to native code object files and link these object files to produce standalone
executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster
than the bytecode produced by ocamlc, at the cost of increased compilation time and executable
code size. Compatibility with the bytecode compiler is extremely high: the same source code should
run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlc with bytecode object
files produced by ocamlopt: a program must be compiled entirely with ocamlopt or entirely with
ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system
ocaml.

11.1 Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the
same types of arguments:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. In-
terfaces specify the names exported by compilation units: they declare value names with
their types, define public data types, declare abstract data types, and so on. From the file
xz.m1i, the ocamlopt compiler produces a compiled interface in the file x.cmi. The interface
produced is identical to that produced by the bytecode compiler ocamlc.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.m1, the ocamlopt compiler
produces two files: x.o0, containing native object code, and z.cmx, containing extra informa-
tion for linking and optimization of the clients of the unit. The compiled implementation
should always be referred to under the name z.cmx (when given a .o file, ocamlopt assumes
that it contains code compiled from C, not from Caml).

The implementation is checked against the interface file z.m1i (if it exists) as described in
the manual for ocamlc (chapter §).

159

160

Arguments ending in .cmx are taken to be compiled object code. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
Caml standard library, to produce a native-code executable program. The order in which
.cmx and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmx file must come before all .cmx files
that refer to the unit x.

Arguments ending in .cmxa are taken to be libraries of object code. Such a library packs in
two files (lib.cmxa and lib.a) a set of object files (.cmx/.o files). Libraries are build with
ocamlopt -a (see the description of the -a option below). The object files contained in the
library are linked as regular .cmx files (see above), in the order specified when the library
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

Arguments ending in .c are passed to the C compiler, which generates a .o object file. This
object file is linked with the program.

Arguments ending in .o, .a or .so (.obj, .1lib and .d11l under Windows) are assumed to
be C object files and libraries. They are linked with the program.

The output of the linking phase is a regular Unix executable file. It does not need ocamlrun to
run.

11.2 Options

The following command-line options are recognized by ocamlopt.

—a

Build a library (.cmxa/.a file) with the object files (.cmx/.o files) given on the command
line, instead of linking them into an executable file. The name of the library can be set with
the -o option. The default name is 1ibrary.cmxa.

If —cclib or -ccopt options are passed on the command line, these options are stored in
the resulting .cmxa library. Then, linking with this library automatically adds back the
-cclib and -ccopt options as if they had been provided on the command line, unless the
-noautolink option is given.

Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

—CC ccomp

Use ccomp as the C linker called to build the final executable and as the C compiler for
compiling .c source files.

-cclib -1libname

Pass the -1libname option to the linker. This causes the given C library to be linked with
the program.

Chapter 11. Native-code compilation (ocamlopt) 161

—ccopt option
Pass the given option to the C compiler and linker. For instance, ~ccopt -Ldir causes the C
linker to search for C libraries in directory dir.

—-compact
Optimize the produced code for space rather than for time. This results in slightly smaller
but slightly slower programs. The default is to optimize for speed.

-i Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). This can be useful to check the types inferred
by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing
an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to
a .mli file, and edit that file to remove all declarations of unexported names.

-1 directory
Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory is
searched first, then the standard library directory. Directories added with -I are searched
after the current directory, in the order in which they were given on the command line, but
before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-inline n
Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0
prevents all functions from being inlined, except those whose body is smaller than the call
site. Thus, inlining causes no expansion in code size. The default aggressiveness, —inline
1, allows slightly larger functions to be inlined, resulting in a slight expansion in code size.
Higher values for the -inline option cause larger and larger functions to become candidate
for inlining, but can result in a serious increase in code size.

-linkall
Forces all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (-a flag), setting the ~1inkall flag forces
all subsequent links of programs involving that library to link all the modules contained in
the library.

-noassert
Turn assertion checking off: assertions are not compiled. This flag has no effect when linking
already compiled files.

-noautolink
When linking .cmxa libraries, ignore -cclib and -ccopt options potentially contained in
the libraries (if these options were given when building the libraries). This can be useful
if a library contains incorrect specifications of C libraries or C options; in this case, during
linking, set -noautolink and pass the correct C libraries and options on the command line.

162

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-0 exec-file
Specify the name of the output file produced by the linker. The default output name is a. out,
in keeping with the Unix tradition. If the -a option is given, specify the name of the library
produced. If the -output-obj option is given, specify the name of the output file produced.

—output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to
wrap Caml code as a C library, callable from any C program. See chapter [[§, section [8.7.5.
The name of the output object file is camlprog.o by default; it can be set with the -o option.

-p Generate extra code to write profile information when the program is executed. The profile
information can then be examined with the analysis program gprof. (See chapter [[7 for
more information on profiling.) The -p option must be given both at compile-time and at
link-time. Linking object files not compiled with —p is possible, but results in less precise
profiling.

Unix:

See the Unix manual page for gprof(1) for more information about the pro-
files.

Full support for gprof is only available for certain platforms (currently: Intel x86/Linux
and Alpha/Digital Unix). On other platforms, the -p option will result in a less precise
profile (no call graph information, only a time profile).

Windows:

The -p option does not work under Windows.

-pack
Build an object file (.cmx/ .o file) and its associated compiled interface (.cmi) that combines
the .cmx object files given on the command line, making them appear as sub-modules of the
output .cmx file. The name of the output .cmx file must be given with the -o option. For
instance,

ocamlopt -pack -o p.cmx a.cmx b.cmx c.cmx

generates compiled files p.cmx, p.o and p.cmi describing a compilation unit having three
sub-modules A, B and C, corresponding to the contents of the object files a.cmx, b.cmx and
c.cmx. These contents can be referenced as P. A, P.B and P.C in the remainder of the program.

Unix:

The -pack option is available only under platforms that provide the GNU
binutils tools nm and objcopy.

Chapter 11. Native-code compilation (ocamlopt) 163

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards. The name of this file is built
from the basename of the source file with the extension .ppi for an interface (.mli) file and
.ppo for an implementation (.ml) file.

-principal
Check information path during type-checking, to make sure that all types are derived in a
principal way. All programs accepted in —~principal mode are also accepted in default mode
with equivalent types, but different binary signatures.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-S Keep the assembly code produced during the compilation. The assembly code for the source
file z.ml is saved in the file z.s.

—thread
Compile or link multithreaded programs, in combination with the threads library described
in chapter 4. What this option actually does is select a special, thread-safe version of the
standard library.

-unsafe
Turn bound checking off on array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if
the program accesses an array or string outside of its bounds.

-v Print the version number of the compiler and the location of the standard library directory,
then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the assem-
bler, C compiler, and linker.

-version
Print the version number of the compiler in short form (e.g. 3.06), then exit.

-w warning-list
Enable or disable warnings according to the argument warning-list. The argument is a string
of one or several characters, with the following meaning for each character:

A/a enable/disable all warnings.
C/c enable/disable warnings for suspicious comments.

D/d enable/disable warnings for deprecated features.

F/f enable/disable warnings for partially applied functions (i.e. £ x; expr where the appli-
cation £ x has a function type).

164

L/1 enable/disable warnings for labels omitted in application.
M/m enable/disable warnings for overriden methods.
P/p enable/disable warnings for partial matches (missing cases in pattern matchings).

S/s enable/disable warnings for statements that do not have type unit (e.g. exprl; expr2
when exprl does not have type unit).

U/u enable/disable warnings for unused (redundant) match cases.
V/v enable/disable warnings for hidden instance variables.

X/x enable/disable all other warnings.
The default setting is -w Al (all warnings but labels enabled).

-warn-error warning-list
Turn the warnings indicated in the argument warning-list into errors. The compiler will stop
on an error as soon as one of these warnings is emitted, instead of going on. The warning-
list is a string of one or several characters, with the same meaning as for the -w option:
an uppercase character turns the corresponding warning into an error, a lowercase character
leaves it as a warning. The default setting is ~-warn-error a (all warnings are not treated as
errors).

-where
Print the location of the standard library.

11.3 Common errors

The error messages are almost identical to those of ocamlc. See section B.4.

11.4 Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code
compiler. Except on those points, the two compilers should generate code that behave identically.

e The following operations abort the program (via an hardware trap or fatal Unix signal)
instead of raising an exception:
— integer division by zero, modulus by zero;
— stack overflow;

— on the Alpha processor only, floating-point operations involving infinite or denormalized
numbers (all other processors supported by ocamlopt treat these numbers correctly, as
per the IEEE 754 standard).

In particular, notice that stack overflow caused by excessively deep recursion is reported by
most Unix kernels as a “segmentation violation” signal.

Chapter 11. Native-code compilation (ocamlopt) 165

e Signals are detected only when the program performs an allocation in the heap. That is, if
a signal is delivered while in a piece of code that does not allocate, its handler will not be
called until the next heap allocation.

The best way to avoid running into those incompatibilities is to mnever trap the
Division_by_zero and Stack_overflow exceptions, thus also treating them as fatal er-
rors with the bytecode compiler as well as with the native-code compiler. Often, it is feasible to
test the divisor before performing the operation, instead of trapping the exception afterwards.

166

Chapter 12

Lexer and parser generators
(ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences
with 1lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason
and Brown (O’Reilly, 1992).

12.1 Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of lex. Assuming the input file is lezer.ml1l, executing

ocamllex lexer.mll

produces Caml code for a lexical analyzer in file lexzer.m1l. This file defines one lexing function per
entry point in the lexer definition. These functions have the same names as the entry points. Lexing
functions take as argument a lexer buffer, and return the semantic attribute of the corresponding
entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing.
The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create
lexer buffers that read from an input channel, a character string, or any reading function, respec-
tively. (See the description of module Lexing in chapter 20.)

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of ocamlyacc below.)

167

168

12.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp ...
rule entrypoint =

parse regexp { action }

I ...

| regexp { action }
and entrypoint =

parse ...
and ...
{ trailer }

Comments are delimited by (* and *), as in Caml.

12.2.1 Header and trailer

The header and trailer sections are arbitrary Caml text enclosed in curly braces. Either or both
can be omitted. If present, the header text is copied as is at the beginning of the output file and
the trailer text at the end. Typically, the header section contains the open directives required by
the actions, and possibly some auxiliary functions used in the actions.

12.2.2 Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular
expressions. This is written let ident = regexp. In following regular expressions, the identifier
tdent can be used as shorthand for regexp.

12.2.3 Entry points

The names of the entry points must be valid identifiers for Caml values (starting with a lowercase
letter). Each entry point becomes a Caml function that takes one argument of type Lexing.lexbuf.
Characters are read from the Lexing.lexbuf argument and matched against the regular expressions
provided in the rule, until a prefix of the input matches one of the rule. The corresponding action
is then evaluated and returned as the result of the function.

If several regular expressions match a prefix of the input, the “longest match” rule applies: the
regular expression that matches the longest prefix of the input is selected. In case of tie, the regular
expression that occurs earlier in the rule is selected.

12.2.4 Regular expressions

The regular expressions are in the style of 1lex, with a more Caml-like syntax.
> char ’

A character constant, with the same syntax as Objective Caml character constants. Match
the denoted character.

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 169

(Underscore.) Match any character.

eof Match the end of the lexer input.
Note: On some systems, with interactive input, an end-of-file may be followed by more
characters. However, ocamllex will not correctly handle regular expressions that contain eof
followed by something else.

" string "

A string constant, with the same syntax as Objective Caml string constants. Match the
corresponding sequence of characters.

[character-set]

Match any single character belonging to the given character set. Valid character sets are:
single character constants > ¢ ’; ranges of characters > ¢; > = ? ¢o ’ (all characters between
c1 and co, inclusive); and the union of two or more character sets, denoted by concatenation.

[~ character-set]

Match any single character not belonging to the given character set.

regexp *

(Repetition.) Match the concatenation of zero or more strings that match regexp.

regexp +

(Strict repetition.) Match the concatenation of one or more strings that match regexp.

regexp ?

(Option.) Match either the empty string, or a string matching regexp.

regexp, | regexp,

(Alternative.) Match any string that matches either regexp, or regexp,

regexp; regexpo

(Concatenation.) Match the concatenation of two strings, the first matching regexp;, the
second matching regexps.

(regexp)

ident

Match the same strings as regexp.

Reference the regular expression bound to ident by an earlier let ident = regexp definition.

Concerning the precedences of operators, * and + have highest precedence, followed by 7, then
concatenation, then | (alternation).

12.2.

5 Actions

The actions are arbitrary Caml expressions. They are evaluated in a context where the identifier
lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the
operations on lexer buffers provided by the Lexing standard library module, are listed below.

170

Lexing.lexeme lexbuf
Return the matched string.

Lexing.lexeme_char lexbuf n
Return the n'® character in the matched string. The first character corresponds to n = 0.

Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string. The
first character read from the input text has position 0.

Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string. The first
character read from the input text has position 0.

entrypoint lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Useful for lexing nested comments, for example.

12.2.6 Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such
identifier in your programs.

12.3 Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with at-
tached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

ocamlyacc options grammar.mly

produces Caml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented
in the standard library module Lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by ocamlyacc.

12.4 Syntax of grammar definitions

Grammar definitions have the following format:

Al
header
o}

declarations

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 171

Toth

Toth

rules

trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections,

and between (x and *) (as in Caml) in the “header” and “trailer” sections.

12.4.1 Header and trailer

The header and the trailer sections are Caml code that is copied as is into file grammar.ml. Both
sections are optional. The header goes at the beginning of the output file; it usually contains open
directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at
the end of the output file.

12.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

Jtoken symbol ... symbol

Declare the given symbols as tokens (terminal symbols). These symbols are added as constant
constructors for the token concrete type.

%token < type > symbol . .. symbol

Declare the given symbols as tokens with an attached attribute of the given type. These
symbols are added as constructors with arguments of the given type for the token concrete
type. The type part is an arbitrary Caml type expression, except that all type constructor
names must be fully qualified (e.g. Modname.typename) for all types except standard built-
in types, even if the proper open directives (e.g. open Modname) were given in the header
section. That’s because the header is copied only to the .ml output file, but not to the .mli
output file, while the type part of a %token declaration is copied to both.

%hstart symbol...symbol

Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the %type directive below.

htype < type > symbol . .. symbol

Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the Objective Caml compiler (unless the
-s option is in effect). The type part is an arbitrary Caml type expression, except that all
type constructor names must be fully qualified, as explained above for %token.

%left symbol...symbol

172

%right symbol...symbol

%nonassoc symbol. .. symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before
in a %left, %right or %nonassoc line. They have lower precedence than symbols declared
after in a %left, Jright or %nonassoc line. The symbols are declared to associate to the
left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.

12.4.3 Rules

The syntax for rules is as usual:

nonterminal :
symbol ... symbol { semantic-action }
| ...
| symbol ... symbol { semantic-action }

Rules can also contain the %prec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary Caml expressions, that are evaluated to produce the semantic
attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in
yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular Caml symbols, except that they cannot end with > (single
quote).

12.4.4 FError handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can
apply), it calls a function named parse_error with the string "syntax error" as argument. The
default parse_error function does nothing and returns, thus initiating error recovery (see below).
The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the
Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where
the error token can be shifted. It then discards tokens from the input until it finds three suc-
cessive tokens that can be accepted, and starts processing with the first of these. If no state

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 173

can be uncovered where the error token can be shifted, then the parser aborts by raising the
Parsing.Parse_error exception.
Refer to documentation on yacc for more details and guidance in how to use error recovery.

12.5 Options
The ocamlyacc command recognizes the following options:

-v Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar. output.

-bprefix
Name the output files prefix.ml, prefir.mli, prefix.output, instead of the default naming
convention.

At run-time, the ocamlyacc-generated parser can be debugged by setting the p option in the
OCAMLRUNPARAM environment variable (see section [[0.J). This causes the pushdown automaton
executing the parser to print a trace of its action (tokens shifted, rules reduced, etc). The trace
mentions rule numbers and state numbers that can be interpreted by looking at the file gram-
mar.output generated by ocamlyacc -v.

12.6 A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard
input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */
J%token <int> INT

Y%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN
J%token EOL

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */

%type <int> main

Do

main:
expr EOL {$11%}
expr:
INT {$113}
| LPAREN expr RPAREN {$213
| expr PLUS expr {$1+ 831}
| expr MINUS expr {$1-9$31%

174

| expr TIMES expr {$1 % $3 1}
| expr DIV expr {$1/ 83}
| MINUS expr %prec UMINUS { - $2 }

Here is the definition for the corresponding lexer:

(* File lexer.mll *)

{
open Parser (* The type token is defined in parser.mli *)
exception Eof
3
rule token = parse
[7 °\t’] { token lexbuf } (* skip blanks *)
I [’\n’] { EOL }
| [20°-°9°]+ { INT(int_of_string(Lexing.lexeme lexbuf)) }
| 2+ { PLUS }
| = { MINUS }
| 2% { TIMES }
I/ { DIV }
IO { LPAREN }
I 2) { RPAREN }
| eof { raise Eof }

Here is the main program, that combines the parser with the lexer:

(* File calc.ml %)
let _ =
try
let lexbuf = Lexing.from_channel stdin in
while true do
let result = Parser.main Lexer.token lexbuf in
print_int result; print_newline(); flush stdout
done
with Lexer.Eof ->

exit O
To compile everything, execute

ocamllex lexer.mll # generates lexer.ml

ocamlyacc parser.mly # generates parser.ml and parser.mli
ocamlc -c parser.mli

ocamlc -c lexer.ml

ocamlc -c parser.ml

ocamlc -c calc.ml

ocamlc -o calc lexer.cmo parser.cmo calc.cmo

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 175

12.7 Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions.
The message above indicates that your lexer definition is too complex and overflows this
limit. This is commonly caused by lexer definitions that have separate rules for each of the
alphabetic keywords of the language, as in the following example.

rule token = parse
"keywordl" { KwD1 }
"keyword2" { KWwD2 }

"keyword100" { KwWD100 }
[7A)_7Z7)a)_7z7] [’A)_’Z) 7a7_)z’ 707_)97) 7] *
{ IDENT(Lexing.lexeme lexbuf) }

To keep the generated automata small, rewrite those definitions with only one general “iden-
tifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
let _ =
List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
["keywordl", KWD1;
"keyword2", KWD2;
"keyword100", KWD100]
b
rule token = parse
[’A=2Z° a’-’z’] [PA’-°Z° ’a’-’z’> ’0°-’9°] %
{ let id = Lexing.lexeme lexbuf in
try
Hashtbl.find keyword_table s
with Not_found ->
IDENT s }

176

Chapter 13

Dependency generator (ocamldep)

The ocamldep command scans a set of Objective Caml source files (.m1 and .m1i files) for references
to external compilation units, and outputs dependency lines in a format suitable for the make utility.
This ensures that make will compile the source files in the correct order, and recompile those files
that need to when a source file is modified.

The typical usage is:

ocamldep options *.mli *.ml > .depend

where *.m1i *.ml expands to all source files in the current directory and .depend is the file that
should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with
the native-code compiler ocamlopt.

13.1 Options
The following command-line option is recognized by ocamldep.

-1 directory
Add the given directory to the list of directories searched for source files. If a source file
foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface
bar.cmi is generated only if the source for bar is found in the current directory or in one of
the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard
library, and no dependencies are generated. For programs that span multiple directories, it
is recommended to pass ocamldep the same -I options that are passed to the compiler.

-native

Generate dependencies for a pure native-code program (no bytecode version). When an
implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates
dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can
cause unnecessary bytecode recompilations for programs that are compiled to native-code
only. The flag -native causes dependencies on native compiled files (.cmx) to be generated
instead of on .cmo files. (This flag makes no difference if all source files have explicit .m1i
interface files.)

177

178

13.2 A typical Makefile

Here is a template Makefile for a Objective Caml program.

OCAMLC=ocamlc

OCAMLOPT=ocamlopt

OCAMLDEP=ocamldep

INCLUDES= # all relevant -I options here
OCAMLFLAGS=$ (INCLUDES) # add other options for ocamlc here
OCAMLOPTFLAGS=$ (INCLUDES) # add other options for ocamlopt here

progl should be compiled to bytecode, and is composed of three
units: modl, mod2 and mod3.

The list of object files for progl
PROG1_0BJS=mod1.cmo mod2.cmo mod3.cmo

progl: $(PROG1_0BJS)
$ (0CAMLC) -o progl $(OCAMLFLAGS) $(PROG1_0BJS)

prog2 should be compiled to native-code, and is composed of two
units: mod4 and mod>5.

The list of object files for prog2
PROG2_0BJS=mod4.cmx mod5.cmx

prog2: $(PROG2_0BJS)
$ (OCAMLOPT) -o prog2 $(OCAMLFLAGS) $(PROG2_0BJS)

Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
$(0CAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
$(0OCAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
$ (OCAMLOPT) $(OCAMLOPTFLAGS) -c $<

Clean up

clean:
rm -f progl prog2
rm -f *.cm[iox]

Chapter 13. Dependency generator (ocamldep) 179

Dependencies

depend:
$ (OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend

180

Chapter 14

The browser/editor (ocamlbrowser)

This chapter describes OCamlBrowser, a source and compiled interface browser, written using
LablTk. This is a useful companion to the programmer.
Its functions are:

e navigation through Objective Caml’s modules (using compiled interfaces).
e source editing, type-checking, and browsing.

e integrated Objective Caml shell, running as a subprocess.

14.1 Invocation

The browser is started by the command ocamlbrowser, as follows:
ocamlbrowser options

The following command-line options are recognized by ocamlbrowser.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, only the standard library directory is searched. The standard library can also be
changed by setting the OCAMLLIB environment variable.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-oldui
Old multi-window interface. The default is now more like Smalltalk’s class browser.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-w warning-list
Enable or disable warnings according to the argument warning-list.

181

182

Most options can also be modified inside the application by the Modules - Path editor and
Compiler - Preferences commands. They are inherited when you start a toplevel shell.

14.2 Viewer

This is the first window you get when you start OCamlBrowser. It displays a search window, and
the list of modules in the load path. At the top a row of menus.

e File - Open and File - Editor give access to the editor.

e File - Shell creates an Objective Caml subprocess in a shell.

e View - Show all defs displays the signature of the currently selected module.
e View - Search entry shows/hides the search entry just below the menu bar.

e Modules - Path editor changes the load path. Modules - Reset cache rescans the load
path and resets the module cache. Do it if you recompile some interface, or get confused
about what is in the cache.

e Modules - Search symbol allows to search a symbol either by its name, like the bottom
line of the viewer, or, more interestingly, by its type. Exact type searches for a type with
exactly the same information as the pattern (variables match only variables). Included type
allows to give only partial information: the actual type may take more arguments and return
more results, and variables in the pattern match anything. In both cases, argument and tuple
order is irrelevantf], and unlabeled arguments in the pattern match any label.

e The Search entry just below the menu bar allows one to search for an identifier in all
modules (wildcards “?” and “*” allowed). If you choose the type option, the search is done
by type inclusion (¢f. Search Symbol - Included type).

e The Close all button is there to dismiss the windows created by the Detach button. By
double-clicking on it you will quit the browser.

14.3 Module browsing

You select a module in the leftmost box by either cliking on it or pressing return when it is selected.
Fast access is available in all boxes pressing the first few letter of the desired name. Double-clicking
/ double-return displays the whole signature for the module.

Defined identifiers inside the module are displayed in a box to the right of the previous one.
If you click on one, this will either display its contents in another box (if this is a sub-module) or
display the signature for this identifier below.

Signatures are clickable. Double clicking with the left mouse button on an identifier in a
signature brings you to its signature. A single click on the right button pops up a menu displaying

1To avoid combinatorial explosion of the search space, optional arguments in the actual type are ignored in the
actual if (1) there are too many of them, and (2) they do not appear explicitly in the pattern.

Chapter 14. The browser/editor (ocamlbrowser) 183

the type declaration for the selected identifier. Its title, when selectable, also brings you to its
signature.
At the bottom, a series of buttons, depending on the context.

e Detach copies the currently displayed signature in a new window, to keep it.

e Impl and Intf bring you to the implementation or interface of the currently displayed signa-
ture, if it is available.

Control-S lets you search a string in the signature.

14.4 File editor

You can edit files with it, if you're not yet used to emacs. Otherwise you can use it as a browser,
making occasional corrections.

The Edit menu contains commands for jump (C-g), search (C-s), and sending the current
phrase (or selection if some text is selected) to a sub-shell (M-x). For this last option, you may
choose the shell via a dialog.

Essential functions are in the Compiler menu.

e Preferences opens a dialog to set internals of the editor and type-checker.
e Lex adds colors according to lexical categories.

e Typecheck verifies typing, and memorizes to let one see an expression’s type by double-
clicking on it. This is also valid for interfaces. If an error occurs, the part of the interface
preceding the error is computed.

After typechecking, pressing the right button pops up a menu giving the type of the pointed
expression, and eventually allowing to follow some links.

e Clear errors dismisses type-checker error messages and warnings.

e Signature shows the signature of the current file (after type checking).

14.5 Shell

When you create a shell, a dialog is presented to you, letting you choose which command you want
to run, and the title of the shell (to choose it in the Editor).
The executed subshell is given the current load path.

e File use a source file or load a bytecode file. You may also import the browser’s path into
the subprocess.

e History M-p and M-n browse up and down.

e Signal C-c interrupts, and you can also kill the subprocess.

184

Chapter 15

The documentation generator
(ocamldoc)

This chapter describes OCamldoc, a tool that generates documentation from special comments
embedded in source files. The comments used by OCamldoc are of the form (**...*) and follow
the format described in section [R™2.

OCamldoc can produce documentation in various formats: HTML, IXTEX, TeXinfo, Unix man
pages, and dot dependency graphs. Moreover, users can add their own custom generators, as
explained in section [[5.3.

In this chapter, we use the word element to refer to any of the following parts of an OCaml
source file: a type declaration, a value, a module, an exception, a module type, a type constructor,
a record field, a class, a class type, a class method, a class value or a class inheritance clause.

15.1 Usage

15.1.1 Invocation

OCamldoc is invoked via the command ocamldoc, as follows:

ocamldoc options sourcefiles

Options for choosing the output format

The following options determine the format for the generated documentation.

-html
Generate documentation in HTML default format. The generated HTML pages are stored in
the current directory, or in the directory specified with the -d option. You can customize the
style of the generated pages by editing the generated style.css file, or by providing your
own style sheet using option -css-style.

-latex
Generate documentation in IXTEX default format. The generated KTEX document is saved in
file ocamldoc.out, or in the file specified with the —o option. The document uses the style file

185

186

ocamldoc. sty included in the OCamldoc distribution. You can change this file to customize
the style of your A TEX documentation.

-texi
Generate documentation in TeXinfo default format. The generated IXTEX document is saved
in file ocamldoc.out, or in the file specified with the -o option.

-man
Generate documentation as a set of Unix man pages. The generated pages are stored in the
current directory, or in the directory specified with the -d option.

-dot
Generate a dependency graph for the toplevel modules, in a format suitable for display-
ing and processing by dot. The dot tool is available from http://www.research.att.
com/sw/tools/graphviz/. The textual representation of the graph is written to the file
ocamldoc.out, or to the file specified with the -o option. Use dot ocamldoc.out to display
it.

-g file.cmfo,a]
Dynamically load the given file, which defines a custom documentation generator. See section
[5.21. This option is supported by the ocamldoc command, but not by its native-code version
ocamldoc.opt.

General options

-d dir
Generate files in directory dir, rather than in the current directory.

—-dump file
Dump collected information into file. This information can be read with the -load option in
a subsequent invocation of ocamldoc.

-hide modules
Hide the given complete module names in the generated documentation modules is
a list of complete module names are separated by ’,’, without blanks. For instance:
Pervasives,M2.M3.

-inv-merge-ml-mli
Inverse implementations and interfaces when merging. All elements in implementation files
are kept, and the -m option indicates which parts of the comments in interface files are merged
with the comments in implementation files.

—-keep-code
Always keep the source code for values, methods and instance variables, when available. The
source code is always kept when a .ml file is given, but is by default discarded when a .mli
is given. This option allows to always keep the source code.

http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

Chapter 15. The documentation generator (ocamldoc) 187

-load file
Load information from file, which has been produced by ocamldoc -dump. Several -load
options can be given.

-m flags
. gpecify merge options between interfaces and implementations. (see section [[5.1.2 for details).
flags can be one or several of the following characters:
d merge description
a merge @Qauthor
v merge Qversion
merge Qsee
s merge @since
o merge Qdeprecated
p merge @param
merge Qraise
merge Qreturn
merge everything

-no-custom-tags
Do not allow custom @-tags (see section [5.2.5).

-no-stop
Keep elements placed after the (**/**) special comment (see section [[5.2).

-o file
Output the generated documentation to file instead of ocamldoc.out. This option is mean-
ingful only in conjunction with the -latex, -texi, or —dot options.

-pp command
Pipe sources through preprocessor command.

-sort
Sort the list of top-level modules before generating the documentation.

-stars
Remove blank characters until the first asterisk (’*’) in each line of comments.

-t title
Use title as the title for the generated documentation.

-v Verbose mode. Display progress information.

-Warn-error
Treat warnings as errors.

188

Type-checking options

OCamldoc calls the Objective Caml type-checker to obtain type informations. The following options
impact the type-checking phase. They have the same meaning as for the ocamlc and ocamlopt
commands.

-I directory
Add directory to the list of directories search for compiled interface files (.cmi files).

-nolabels
Ignore non-optional labels in types.

-rectypes
Allow arbitrary recursive types. (See the -rectypes option to ocamlc.)

Options for generating HTML pages
The following options apply in conjunction with the -html option:

-all-params
Display the complete list of parameters for functions and methods.

-css-style filename
Use filename as the Cascading Style Sheet file.

—-colorize-code
Colorize the OCaml code enclosed in [] and \{[1\}, using colors to emphasize keywords,
etc. If the code fragments are not syntactically correct, no color is added.

—-index-only
Generate only index files.

Options for generating BTEX files
The following options apply in conjunction with the -latex option:

-latex-value-prefix prefix
Give a prefix to use for the labels of the values in the generated IXTEX document. The
default prefix is the empty string. You can also use the options -latex-type-prefix,
-latex-exception-prefix, -latex—-module-prefix, -latex-module-type-prefix,
-latex-class-prefix, -latex-class-type-prefix, -latex-attribute-prefix and
-latex-method-prefix.

These options are useful when you have, for example, a type and a value with the same name.
If you do not specify prefixes, IWTEX will complain about multiply defined labels.

-latextitle n,style
Associate style number n to the given IATEX sectioning command style, e.g. section or
subsection. (IXTEX only.) This is useful when including the generated document in another
TEX document, at a given sectioning level. The default association is 1 for section, 2 for
subsection, 3 for subsubsection, 4 for paragraph and 5 for subparagraph.

Chapter 15. The documentation generator (ocamldoc) 189

-noheader
Suppress header in generated documentation.

-notoc
Do not generate a table of contents (IXTEX only).

-notrailer
Suppress trailer in generated documentation.

-sepfiles
Generate one .tex file per toplevel module, instead of the global ocamldoc.out file.

Options for generating TeXinfo files

The following options apply in conjunction with the -texi option:

-esc8
Escape accented characters in Info files.

-noindex
Do not build index for Info files.

Options for generating dot graphs

The following options apply in conjunction with the -dot option:

-dot-colors colors
Specify the colors to use in the generated dot code. When generating module dependencies,
ocamldoc uses different colors for modules, depending on the directories in which they reside.
When generating types dependencies, ocamldoc uses different colors for types, depending on
the modules in which they are defined. colors is a list of color names separated by ’,’, as in
Red,Blue,Green. The available colors are the ones supported by the dot tool.

-dot-include-all
Include all modules in the dot output, not only modules given on the command line or loaded
with the -load option.

-dot-reduce
Perform a transitive reduction of the dependency graph before outputting the dot code. This
can be useful if there are a lot of transitive dependencies that clutter the graph.

-dot-types
Output dot code describing the type dependency graph instead of the module dependency
graph.

190

Options for generating man files

The following options apply in conjunction with the -man option:

-man-mini
Generate man pages only for modules, module types, clases and class types, instead of pages
for all elements.

-man-suffix
Set the suffix used for generated man filenames. Default is ’o’, like in List.o.

15.1.2 Merging of module information

Information on a module can be extracted either from the .mli or .ml file, or both, depending on
the files given on the command line. When both .m1i and .ml files are given for the same module,
information extracted from these files is merged according to the following rules:

e Only elements (values, types, classes, ...) declared in the .mli file are kept. In other terms,
definitions from the .ml file that are not exported in the .mli file are not documented.

e Descriptions of elements and descriptions in @-tags are handled as follows. If a description
for the same element or in the same @Q-tag of the same element is present in both files, then
the description of the .ml file is concatenated to the one in the .mli file, if the corresponding
-m flag is given on the command line. If a description is present in the .ml file and not in the
.mli file, the .ml description is kept. In either case, all the information given in the .mli file
is kept.

15.1.3 Coding rules

The following rules must be respected in order to avoid name clashes resulting in cross-reference
errors:

e In a module, there must not be two modules, two module types or a module and a module
type with the same name.

e In a module, there must not be two classes, two class types or a class and a class type with
the same name.

e In a module, there must not be two values, two types, or two exceptions with the same name.
e Values defined in tuple, as in let (x,y,z) = (1,2,3) are not kept by OCamldoc.

e Avoid the following construction:

open Foo (* which has a module Bar with a value x *)
module Foo =
struct
module Bar =
struct

Chapter 15. The documentation generator (ocamldoc) 191

let x =1
end
end
let dummy = Bar.x

In this case, OCamldoc will associate Bar.x to the x of module Foo defined just above, instead
of to the Bar.x defined in the opened module Foo.

15.2 Syntax of documentation comments

Comments containing documentation material are called special comments and are written between
(*x and *). Special comments must start exactly with (**. Comments beginning with (and more
than two * are ignored.

15.2.1 Placement of documentation comments

OCamldoc can associate comments to some elements of the language encountered in the source
files. The association is made according to the locations of comments with respect to the language
elements. The locations of comments in .m1i and .ml files are different.

Comments in .mli files

A special comment is associated to an element if it is placed before or after the element.
A special comment before an element is associated to this element if :

e There is no blank line or another special comment between the special comment and the ele-
ment. However, a regular comment can occur between the special comment and the element.

e The special comment is not already associated to the previous element.
e The special comment is not the first one of a toplevel module.

A special comment after an element is associated to this element if there is no blank line or
comment between the special comment and the element.

There are two exceptions: for type constructors and record fields in type definitions, the asso-
ciated comment can only be placed after the constructor or field definition, without blank lines or
other comments between them.

The following sample interface file foo.mli illustrates the placement rules for comments in .mli
files.

(*x The first special comment of the file is the comment associated
with the whole module.*)

(** Special comments can be placed between elements and are kept
by the 0Camldoc tool, but are not associated to any element.
@-tags in these comments are ignored.*)

192

(ok sk sk ok sk sk ok sk ok sk s ok sk sk ok sk ok ok ok ok 3 ok sk sk ok sk sk ok ok ok 3 ok ok 3k ok sk ok ok s ok ok s ok sk sk ok sk sk ok ok ok ok K sk ok ok ok ok ok)
(** Comments like the one above, with more than two asterisks,
are ignored. *)

(** The comment for function f. %)
val £ : int -> int -> int
(** The continuation of the comment for function f. *)

(** Comment for exception My_exception, even with a simple comment
between the special comment and the exception.x*)

(* Hello, I'm a simple comment :-) *)

exception My_exception of (int -> int) * int

(** Comment for type weather *)

type weather =

| Rain of int (** The comment for construtor Rain *)
| Sun (*#* The comment for constructor Sun *)

(*x Comment for type weather2 x)
type weather2 =
| Rain of int (** The comment for construtor Rain *)
| Sun (** The comment for constructor Sun *)
(#¥x I can continue the comment for type weather2 here
because there is already a comment associated to the last constructor.x*)

(** The comment for type my_record *)

type my_record = {
val foo : int ; (** Comment for field foo *)
val bar : string ; (** Comment for field bar *)

}

(** Continuation of comment for type my_record *)

(*x Comment for foo *)

val foo : string

(*x This comment is associated to foo and not to bar. *)
val bar : string

(*x This comment is assciated to bar. *)

(** The comment for class my_class *)
class my_class
object
(#* A comment to describe inheritance from cl *)
inherit cl

Chapter 15. The documentation generator (ocamldoc) 193

(**x The comment for attribute tutu *)
val mutable tutu : string

(%% The comment for attribute toto. *)
val toto : int

(** This comment is not attached to titi since
there is a blank line before titi, but is kept
as a comment in the class. *)

val titi : string

(** Comment for method toto *)
method toto : string

(** Comment for method m *)
method m : float -> int
end

(** The comment for the class type my_class_type *)
class type my_class_type =
object
(** The comment for variable x. *)
val mutable x : int

(** The commend for method m. *)
method m : int -> int
end

(x* The comment for module Foo *)
module Foo =
struct
(** The comment for x *)
val x : int

(** A special comment that is kept but not associated to any element *)
end

(** The comment for module type my_module_type. *)
module type my_module_type =
sig
(** The comment for value x. *)
val x : int

(%% The comment for module M. *)

194

module M =
struct
(** The comment for value y. *)
val y : int

(x ... %)

end

end

Comments in .ml files

A special comment is associated to an element if it is placed before the element and there is no
blank line between the comment and the element. Meanwhile, there can be a simple comment
between the special comment and the element. There are two exceptions, for type constructors and
record fields in type definitions, whose associated comment must be placed after the constructor or
field definition, without blank line between them.

The following example of file toto.ml shows where to place comments in a .ml file.

(** The first special comment of the file is the comment associated
to the whole module.*)

(** The comment for function f *)
let fxy=x+y

(*x This comment is not attached to any element since there is another
special comment just before the next element. *)

(*x Comment for exception My_exception, even with a simple comment
between the special comment and the exception.x*)

(* A simple comment. *)

exception My_exception of (int -> int) * int

(** Comment for type weather *)

type weather =

| Rain of int (** The comment for constructor Rain *)
| Sun (** The comment for constructor Sun *)

(** The comment for type my_record *)

type my_record = {
val foo : int ; (** Comment for field foo *)
val bar : string ; (** Comment for field bar *)

(** The comment for class my_class *)

Chapter 15. The documentation generator (ocamldoc) 195

class my_class =
object
(x*x A comment to describe inheritance from cl *)
inherit cl

(xx The comment for the instance variable tutu *)
val mutable tutu = "tutu"
(** The comment for toto *)
val toto =1
val titi = "titi"
(** Comment for method toto *)
method toto = tutu =~ "!"
(xx Comment for method m *)
method m (f : float) = 1
end

(** The comment for class type my_class_type *)
class type my_class_type =
object
(xx The comment for the instance variable x. *)
val mutable x : int
(** The commend for method m. *)
method m : int -> int
end

(** The comment for module Foo *)
module Foo =
struct
(** The comment for x *)
val x : int
(x* A special comment in the class, but not associated to any element. *)

end

(** The comment for module type my_module_type. *)
module type my_module_type =
sig
(* Comment for value x. *)
val x : int
(CINED.

end

15.2.2 The Stop special comment

The special comment (x*/**) tells OCamldoc to discard elements placed after this comment, up
to the end of the current class, class type, module or module type. For instance:

196

class type foo =
object
(** comment for method m *)
method m : string

(k3 /%)

(x* This method won’t appear in the documentation *)
method bar : int
end

(*x This value appears in the documentation, since the Stop special comment
in the class does not affect the parent module of the class.*)
val foo : string

(kx /*%)
(** The value bar does not appear in the documentation.*)
val bar : string

(** The type t does not appear either. *)
type t = string

The -no-stop option to ocamldoc causes the Stop special comments to be ignored.

15.2.3 Syntax of documentation comments

The inside of documentation comments (**...*) consists of free-form text with optional formatting
annotations, followed by optional tags giving more specific information about parameters, version,
authors, ... The tags are distinguished by a leading @ character. Thus, a documentation comment
has the following shape:

(*x The comment begins with a description, which is text formatted
according to the rules described in the next section.
The description continues until the first non-escaped ’Q@’ character.
Q@author Mr Smith
Oparam x description for parameter x

*)

Some elements support only a subset of all @-tags. Tags that are not relevant to the documented
element are simply ignored. For instance, all tags are ignored when documenting type constructors,
record fields, and class inheritance clauses. Similarly, a @param tag on a class instance variable is
ignored.

At last, (**) is the empty documentation comment.

15.2.4 Text formatting

Here is the BNF grammar for the simple markup language used to format text descriptions.

Chapter 15. The documentation generator (ocamldoc) 197

text == (text_element)+

text_element ::=
| {[0-9]+ text}

| {[0-9]+:label text}

{b text}
{i text}
{e text}
{C text}
{L text}
{R text}
{ul Ulst}
{ol list}

[string]

{ [string] }
{v string v}
{% string %}

{Vstring}
| {~ text}
| {_ text}

| escaped_string

| blank_line
list ©:=
| ({- text})+

| ({1i text})+

{{:string}text}

format text as a section header; the integer following { indi-
cates the sectioning level.

same, but also associate the name label to the current point.
This point can be referenced by its fully-qualified label in a
{! command, just like any other element.

set text in bold.

set text in italic.

emphasize tezt.

center text.

left align text.

right align text.

build a list.

build an enumerated list.

put a link to the given address (given as a string) on the
given text.

set the given string in source code style.

set the given string in preformatted source code style.

set the given string in verbatim style.

take the given string as raw IXTEX code.

insert a reference to the element named string. string must
be a fully qualified element name, for example Foo.Bar.t.

set text in superscript.

set text in subscript.

typeset the given string as is; special characters ('{’, ’}’, ’[’,
']’ and ’@’) must be escaped by a ’\’

force a new line.

A shortcut syntax exists for lists and enumerated lists:

(**x Here is a {b list}

- item 1
- item 2
- item 3

The list is ended by the blank line.*)

is equivalent to:

(*x*x Here is a {b list}

{ul {- item 1}

198

{- item 2}
{- item 3}}

The list is ended by the blank line.*)

The same shortcut is available for enumerated lists, using '+’ instead of -’. Note that only one
list can be defined by this shortcut in nested lists.
In the description of a value, type, exception, module, module type, class or class type, the first
sentence is sometimes used in indexes, or when just a part of the description is needed. The first
sentence is composed of the first characters of the description, until

e the first dot followed by a blank, or

e the first blank line

outside of the following text formatting : {ul list}, {ol list}, [stringl, {[stringl}, {v
string v}, {%h stringl}, {!string}, {~ text}, {_ tewxt}.

15.2.5 Documentation tags (@-tags)

Predefined tags

The folowing table gives the list of predefined @-tags, with their syntax and meaning.

Qauthor string

The author of the element. One author by @author tag.
There may be several @author tags for the same element.

Q@deprecated ftext

The text should describe when the element was deprecated,
what to use as a replacement, and possibly the reason for
deprecation.

@param id text

Associate the given description (text) to the given parameter
name id. This tag is used for functions, methods, classes and
functors.

Q@raise Exc text

Explain that the element may raise the exception Exc.

Q@return text

Describe the return value and its possible values. This tag
is used for functions and methods.

@see <url> text

Add a reference to the URL between <’ and ’>’ with the
given text as comment.

Q@see ’filename’

text

Add a reference to the given file name (written between
single quotes), with the given text as comment.

@see "document name" text

Add a reference to the given document name (written be-
tween double quotes), with the given text as comment.

@since string

Indicates when the element was introduced.

Q@version string

The version number for the element.

Custom tags

You can use custom tags in the documentation comments, but they will have no effect if the
generator used does not handle them. To use a custom tag, for example foo, just put @foo with

some text in your comment, as in:

Chapter 15. The documentation generator (ocamldoc) 199

(** My comment to show you a custom tag.
@foo this is the text argument to the [foo] custom tag.

*)

To handle custom tags, you need to define a custom generator, as explained in section [5.3.2.

15.3 Custom generators

OCamldoc operates in two steps:
1. analysis of the source files;

2. generation of documentation, through a documentation generator, which is an object of class
Odoc_args.class_generator.

Users can provide their own documentation generator to be used during step 2 instead of the
default generators. All the information retrieved during the analysis step is available through the
Odoc_info module, which gives access to all the types and functions representing the elements
found in the given modules, with their associated description.

The files you can used to define custom generators are installed in the ocamldoc sub-directory
of the OCaml standard library.

15.3.1 The generator class

A generator class is a class of type Odoc_args.doc_generator. It has only one method
generator : Odoc_info.Module.t_module list -> unit
This method will be called with the list of analysed and possibly merged 0doc_info.t_module
structures. Of course the class can have other methods, but the object of this class must be coerced
to Odoc_args.doc_generator before being passed to the function
Odoc_args.set_doc_generator : Odoc_args.doc_generator —> unit
which installs the new documentation generator.

The following example shows how to define and install a new documentation generator. See the
odoc_fhtml generator (in the Ocamldoc Hump) for a complete example.

class my_doc_gen =

object
(x ... %)
method generate module_list =
(k... %)
O
(CINEED.

end

let my_generator = new my_doc_gen
let _ = Odoc_args.set_doc_generator (my_generator :> Odoc_args.doc_generator)

200

Note: The new class can inherit from Odoc_html.html, Odoc_latex.latex, Odoc_man.man,
Odoc_texi.texi or Odoc_dot.dot, and redefine only some methods to benefit from the existing
methods.

15.3.2 Handling custom tags

Making a custom generator handle custom tags (see [[5.2.) is very simple.

For HTML

Here is how to develop a HTML generator handling your custom tags.

The class 0doc_html.html inherits from the class Odoc_html.info, containing a field
tag_functions which is a list pairs composed of a custom tag (e.g. ’foo’) and a function taking
a text and returning HTML code (of type string). To handle a new tag bar, create a HTML
generator class from the existing one and complete the tag_functions field:

class my_gen =
object (self)
inherit Odoc_html.html

(** Return HTML code for the given text of a bar tag. *)
method html_of_bar t = (* your code here *)

initializer
tag_functions <- ("bar", self#html_of_bar) :: tag_functions
end

Another method of the class 0doc_html.info will look for the function associated to a custom
tag and apply it to the text given to the tag. If no function is associated to a custom tag, then the
method prints a warning message on stderr.

For other generators

As for the HTML custom generator, you can define a new I TEX (resp. man) generator by inheriting
from the class 0doc_latex.latex (resp. Odoc_man.man) and adding your own tag handler to the
field tag_functions.

15.4 Adding command line options

The command line analysis is performed after loading the module containing the documentation
generator, thus allowing command line options to be added to the list of existing ones. Adding an
option can be done with the function

Odoc_args.add_option : string * Arg.spec * string -> unit

Note: Existing command line options can be redefined using this function.

Chapter 15. The documentation generator (ocamldoc) 201

15.4.1 Compilation and usage
Defining a custom generator class in one file

Let custom.ml be the file defining a new generator class. Compilation of custom.ml can be per-
formed by the following command :

ocamlc -I +ocamldoc -c custom.ml

The file custom. cmo is created and can be used this way :

ocamldoc -g custom.cmo other_options source_files

It is important not to give the ~html or any other option selecting a built in generator to ocamldoc,
which would result in using this generator instead of the one you just loaded.

Defining a custom generator class in several files

It is possible to define a generator class in several modules, which are defined in several files
filel.m1[i], file2.m1[i], ..., fileN.m1[i]. A .cma library file must be created, including all
these files.

The following commands create the custom.cma file from files filel.m1[i], ..., fileN.ml[i] :
ocamlc -I +ocamldoc -c filel.ml[i]

ocamlc -I +ocamldoc -c file2.ml[i]

ocamlc -I +ocamldoc -c fileN.ml[i]

ocamlc -o custom.cma -a filel.cmo file2.cmo ... fileN.cmo

Then, the following command uses custom.cma as custom generator:

ocamldoc -g custom.cma other_options source_files

Again, it is important not to give the ~html or any other option selecting a built in generator to
ocamldoc, which would result in using this generator instead of the one you just loaded.

202

Chapter 16

The debugger (ocamldebug)

This chapter describes the Objective Caml source-level replay debugger ocamldebug.

Unix:
The debugger is available on Unix systems that provides BSD sockets.

Windows:
The debugger is available under the Cygwin port of Objective Caml, but not under the native
Win32 port.

MacOS:
The debugger is not available.

16.1 Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all
.cmo and .cma files that are part of the program should have been created with ocamlc -g, and
they must be linked together with ocamlc -g.

Compiling with -g entails no penalty on the running time of programs: object files and bytecode
executable files are bigger and take longer to produce, but the executable files run at exactly the
same speed as if they had been compiled without -g.

16.2 Invocation

16.2.1 Starting the debugger

The Objective Caml debugger is invoked by running the program ocamldebug with the name of
the bytecode executable file as first argument:

ocamldebug [options] program [arguments]

The arguments following program are optional, and are passed as command-line arguments to the
program being debugged. (See also the set arguments command.)
The following command-line options are recognized:

203

204

-I directory
Add directory to the list of directories searched for source files and compiled files. (See also
the directory command.)

-s socket
Use socket for communicating with the debugged program. See the description of the com-
mand set socket (section [[6.8.G) for the format of socket.

-c count
Set the maximum number of simultaneously live checkpoints to count.

-cd directory
Run the debugger program from the working directory directory, instead of the current di-
rectory. (See also the cd command.)

-emacs
Tell the debugger it is executed under Emacs. (See section [[6.1(for information on how to
run the debugger under Emacs.)

16.2.2 Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file
character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate
the action of any debugger command that is in progress and return to the debugger command level.

16.3 Commands

A debugger command is a single line of input. It starts with a command name, which is followed
by arguments depending on this name. Examples:

run
goto 1000
set arguments argl arg?2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000
is understood as goto 1000, since there are no other commands whose name starts with go. For
the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands
for run even though there are others commands starting with r. You can test the validity of an
abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

16.3.1 Getting help

The Objective Caml debugger has a simple on-line help system, which gives a brief description of
each command and variable.

Chapter 16. The debugger (ocamldebug) 205

help
Print the list of commands.

help command
Give help about the command command.

help set wariable, help show wvariable
Give help about the variable variable. The list of all debugger variables can be obtained with
help set.

help info topic
Give help about topic. Use help info to get a list of known topics.

16.3.2 Accessing the debugger state

set wvariable value
Set the debugger variable variable to the value value.

show wvariable
Print the value of the debugger variable variable.

info subject
Give information about the given subject. For instance, info breakpoints will print the list
of all breakpoints.

16.4 Executing a program

16.4.1 Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of
evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to
the next or previous event encountered in the program execution). Also, breakpoints can only be
set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of
this counter is referred as the current time. Thanks to reverse execution, it is possible to jump
back and forth to any time of the execution.

Here is where the debugger events (written bowtie) are located in the source code:

e Following a function application:
(f arg)bowtie

e On entrance to a function:
fun x y z -> bowtie ...

e On each case of a pattern-matching definition (function, match...with construct, try...with
construct):

206

function patl -> bowtie exprl

| ...
| patN -> bowtie exprN

e Between subexpressions of a sequence:

exprl; bowtie expr2; bowtie ...; bowtie exprN
e In the two branches of a conditional expression:

if cond then bowtie exprl else bowtie expr2
e At the beginning of each iteration of a loop:

while cond do bowtie body done
for i = a to b do bowtie body done

Exceptions: A function application followed by a function return is replaced by the compiler by a
jump (tail-call optimization). In this case, no event is put after the function application.

16.4.2 Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting brea-
points or assigning debugger variables before execution starts. There are several ways to start
execution:

run Run the program until a breakpoint is hit, or the program terminates.

step O
Load the program and stop on the first event.

goto time
Load the program and execute it until the given time. Useful when you already know ap-
proximately at what time the problem appears. Also useful to set breakpoints on function
values that have not been computed at time 0 (see section [[6.7).

The execution of a program is affected by certain information it receives when the debugger
starts it, such as the command-line arguments to the program and its working directory. The
debugger provides commands to specify this information (set arguments and cd). These com-
mands must be used before program execution starts. If you try to change the arguments or the
working directory after starting your program, the debugger will kill the program (after asking for
confirmation).

Chapter 16. The debugger (ocamldebug) 207

16.4.3 Running the program

The following commands execute the program forward or backward, starting at the current time.
The execution will stop either when specified by the command or when a breakpoint is encountered.

run Execute the program forward from current time. Stops at next breakpoint or when the
program terminates.

reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint
encountered before the current time.

step [count]
Run the program and stop at the next event. With an argument, do it count times.

backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count
times.

next [count]
Run the program and stop at the next event, skipping over function calls. With an argument,
do it count times.

previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With
an argument, do it count times.

finish
Run the program until the current function returns.

start
Run the program backward and stop at the first event before the current function invocation.

16.4.4 Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.
As you move through the program, the debugger maintains an history of the successive times

you stop at. The last command can be used to revisit these times: each last command moves one

step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.

last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count
times.

set history size
Set the size of the execution history.

208

16.4.5 Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile
the program without leaving the debugger.

16.5 Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It
can be set in several ways using the break command. Breakpoints are assigned numbers when set,
for further reference. The most comfortable way to set breakpoints is through the Emacs interface

(see section [[6.10).

break
Set a breakpoint at the current position in the program execution. The current position must
be on an event (i.e., neither at the beginning, nor at the end of the program).

break function
Set a breakpoint at the beginning of function. This works only when the functional value of
the identifier function has been computed and assigned to the identifier. Hence this command
cannot be used at the very beginning of the program execution, when all identifiers are still
undefined; use goto time to advance execution until the functional value is available.

break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the
first event of line line.

break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the
event closest to line line, column column.

break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.

break address
Set a breakpoint at the code address address.

delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking
for confirmation).

info breakpoints
Print the list of all breakpoints.

16.6 The call stack

Each time the program performs a function application, it saves the location of the application (the
return address) in a block of data called a stack frame. The frame also contains the local variables

Chapter 16. The debugger (ocamldebug) 209

of the caller function. All the frames are allocated in a region of memory called the call stack. The
command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands
refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value
of a local variable, the value is found in the selected frame. The commands frame, up and down
select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and
describes it briefly as the frame command does.

frame
Describe the currently selected stack frame.

frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the
program stopped has number 0; its caller has number 1; and so on up the call stack.

backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently
executing frame. With a positive argument, print only the innermost count frames. With a
negative argument, print only the outermost -count frames.

up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that
called the selected frame. An argument says how many frames to go up.

down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that
was called by the selected frame. An argument says how many frames to go down.

16.7 Examining variable values

The debugger can print the current value of simple expressions. The expressions can involve
program variables: all the identifiers that are in scope at the selected program point can be accessed.

Expressions that can be printed are a subset of Objective Caml expressions, as described by
the following grammar:

expr := lowercase-ident
| {capitalized-ident .} lowercase-ident
| *

| $ integer

| expr . lowercase-ident

| expr . (integer)

| expr . [integer]

| ! expr

| Cexpr)

The first two cases refer to a value identifier, either unqualified or qualified by the path to the
structure that define it. * refers to the result just computed (typically, the value of a function

210

application), and is valid only if the selected event is an “after” event (typically, a function appli-
cation). $ integer refer to a previously printed value. The remaining four forms select part of an
expression: respectively, a record field, an array element, a string element, and the current contents
of a reference.

print wariables
Print the values of the given variables. print can be abbreviated as p.

display wvariables
Same as print, but limit the depth of printing to 1. Useful to browse large data structures
without printing them in full. display can be abbreviated as d.

When printing a complex expression, a name of the form $integer is automatically assigned to
its value. Such names are also assigned to parts of the value that cannot be printed because the
maximal printing depth is exceeded. Named values can be printed later on with the commands p
$integer or d $integer. Named values are valid only as long as the program is stopped. They are
forgotten as soon as the program resumes execution.

set print_depth d
Limit the printing of values to a maximal depth of d.

set print_length [
Limit the printing of values to at most [nodes printed.

16.8 Controlling the debugger

16.8.1 Setting the program name and arguments

set program file
Set the program name to file.

set arguments arguments
Give arguments as command-line arguments for the program.

A shell is used to pass the arguments to the debugged program. You can therefore use wildcards,
shell variables, and file redirections inside the arguments. To debug programs that read from
standard input, it is recommended to redirect their input from a file (using set arguments <
input-file), otherwise input to the program and input to the debugger are not properly separated,
and inputs are not properly replayed when running the program backwards.

16.8.2 How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.

Chapter 16. The debugger (ocamldebug) 211

set loadingmode runtime
The debugger execute the Objective Caml runtime camlrun on the program. Rarely useful,
moreover it prevents the debugging of programs compiled in “custom runtime” mode.

set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging

(see section [[6.8.6]).

16.8.3 Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search
path. The search path initially contains the current directory . and the standard library directory.
The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have
cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and
will therefore be searched first.

directory
Reset the search path. This requires confirmation.

16.8.4 Working directory

Each time a program is started in the debugger, it inherits its working directory from the current
working directory of the debugger. This working directory is initially whatever it inherited from its
parent process (typically the shell), but you can specify a new working directory in the debugger
with the cd command or the -cd command-line option.

cd directory
Set the working directory for camldebug to directory.

pwd Print the working directory for camldebug.

16.8.5 Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution,
and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it
makes a copy of the current state of the program (using the Unix system call fork). If the variable
checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.

212

16.8.6 Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may
need to change the socket name, for example if you need to run the debugger on a machine and
your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an
Internet port specification host:port, where host is a host name or an Internet address in dot
notation, and port is a port number on the host.

On the debugged program side, the socket name is passed either by the -D command line option
to camlrun, or through the CAML_DEBUG_SOCKET environment variable.

16.8.7 Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you
should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back
in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward
execution is faster when checkpoints are taken more often. In particular, backward single-stepping
is more responsive when many checkpoints have been taken just before the current time. To fine-
tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency
for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and
smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.

set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.

info events [module]
Print the list of events in the given module (the current module, by default).

Chapter 16. The debugger (ocamldebug) 213

16.8.8 User-defined printers

Just as in the toplevel system (section P.2), the user can register functions for printing values of
certain types. For technical reasons, the debugger cannot call printing functions that reside in the
program being debugged. The code for the printing functions must therefore be loaded explicitly
in the debugger.

load_printer "file-name"
Load in the debugger the indicated .cmo or .cma object file. The file is loaded in an envi-
ronment consisting only of the Objective Caml standard library plus the definitions provided
by object files previously loaded using load_printer. If this file depends on other object
files not yet loaded, the debugger automatically loads them if it is able to find them in the
search path. The loaded file does not have direct access to the modules of the program being
debugged.

install_printer printer-name
Register the function named printer-name (a value path) as a printer for objects whose types
match the argument type of the function. That is, the debugger will call printer-name when it
has such an object to print. The printing function printer-name must use the Format library
module to produce its output, otherwise its output will not be correctly located in the values
printed by the toplevel loop.

The value path printer-name must refer to one of the functions defined by the object files
loaded using load_printer. It cannot reference the functions of the program being debugged.

remove_printer printer-name
Remove the named function from the table of value printers.

16.9 Miscellaneous commands

list [module] [beginning] [end)]
List the source of module module, from line number beginning to line number end. By default,
20 lines of the current module are displayed, starting 10 lines before the current position.

source filename
Read debugger commands from the script filename.

16.10 Running the debugger under Emacs

The most user-friendly way to use the debugger is to run it under Emacs. See the file emacs/README
in the distribution for information on how to load the Emacs Lisp files for Caml support.

The Caml debugger is started under Emacs by the command M-x camldebug, with argument
the name of the executable file progname to debug. Communication with the debugger takes place
in an Emacs buffer named *camldebug-progname*. The editing and history facilities of Shell mode
are available for interacting with the debugger.

214

In addition, Emacs displays the source files containing the current event (the current posi-
tion in the program execution) and highlights the location of the event. This display is updated
synchronously with the debugger action.

The following bindings for the most common debugger commands are available in the
xcamldebug-progname* buffer:

C-c C-s
(command step): execute the program one step forward.

C-c C-k
(command backstep): execute the program one step backward.

C-c C-n
(command next): execute the program one step forward, skipping over function calls.

Middle mouse button
(command display): display named value. $n under mouse cursor (support incremental
browsing of large data structures).

C-c C-p
(command print): print value of identifier at point.

C-c C-d
(command display): display value of identifier at point.

C-c C-r
(command run): execute the program forward to next breakpoint.

C-c C-v
(command reverse): execute the program backward to latest breakpoint.

C-c C-1
(command last): go back one step in the command history.

C-c C-t
(command backtrace): display backtrace of function calls.

C-c C-f
(command finish): run forward till the current function returns.

C-c <
(command up): select the stack frame below the current frame.

C-c >
(command down): select the stack frame above the current frame.

In all buffers in Caml editing mode, the following debugger commands are also available:

C-x C-a C-b
(command break): set a breakpoint at event closest to point

Chapter 16. The debugger (ocamldebug) 215
C-x C-a C-p
(command print): print value of identifier at point

C-x C-a C-d
(command display): display value of identifier at point

216

Chapter 17

Profiling (ocamlprof)

This chapter describes how the execution of Objective Caml programs can be profiled, by recording
how many times functions are called, branches of conditionals are taken, ...

17.1 Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the ocamlcp
front-end to the ocamlc compiler (see chapter §). When compiling modules separately, ocamlcp
must be used when compiling the modules (production of .cmo files), and can also be used (though
this is not strictly necessary) when linking them together.

Note If a module (.ml file) doesn’t have a corresponding interface (.mli file), then compiling
it with ocamlcp will produce object files (.cmi and .cmo) that are not compatible with the ones
produced by ocamlc, which may lead to problems (if the . cmi or . cmo is still around) when switching
between profiling and non-profiling compilations. To avoid this problem, you should always have a
.mli file for each .ml file.

Note To make sure your programs can be compiled in profiling mode, avoid using any identifier
that begins with __ocaml_prof.

The amount of profiling information can be controlled through the -p option to ocamlcp,
followed by one or several letters indicating which parts of the program should be profiled:

a all options
f function calls : a count point is set at the beginning of function bodies
i if ...then ...else ... : count points are set in both then branch and else branch

1 while, for loops: a count point is set at the beginning of the loop body
m match branches: a count point is set at the beginning of the body of each branch

t try ...with ... branches: a count point is set at the beginning of the body of each branch

217

218

For instance, compiling with ocamlcp -p film profiles function calls, if. .. then...else..., loops
and pattern matching.

Calling ocamlcp without the —p option defaults to -p fm, meaning that only function calls and
pattern matching are profiled.

Note: Due to the implementation of streams and stream patterns as syntactic sugar, it is hard
to predict what parts of stream expressions and patterns will be profiled by a given flag. To profile
a program with streams, we recommend using ocamlcp -p a.

17.2 Profiling an execution

Running a bytecode executable file that has been compiled with ocamlcp records the execution
counts for the specified parts of the program and saves them in a file called ocamlprof .dump in the
current directory.

The ocamlprof .dump file is written only if the program terminates normally (by calling exit
or by falling through). It is not written if the program terminates with an uncaught exception.

If a compatible dump file already exists in the current directory, then the profiling information
is accumulated in this dump file. This allows, for instance, the profiling of several executions of a
program on different inputs.

17.3 Printing profiling information

The ocamlprof command produces a source listing of the program modules where execution counts
have been inserted as comments. For instance,

ocamlprof foo.ml

prints the source code for the foo module, with comments indicating how many times the functions
in this module have been called. Naturally, this information is accurate only if the source file has
not been modified since the profiling execution took place.

The following options are recognized by ocamlprof:

-f dumpfile
Specifies an alternate dump file of profiling information

-F string
Specifies an additional string to be output with profiling information. By default, ocamlprof
will annotate programs with comments of the form (* n *) where n is the counter value for
a profiling point. With option -F s, the annotation will be (x sn *).

17.4 Time profiling

Profiling with ocamlprof only records execution counts, not the actual time spent into each func-
tion. There is currently no way to perform time profiling on bytecode programs generated by
ocamlc.

Chapter 17. Profiling (ocamlprof) 219

Native-code programs generated by ocamlopt can be profiled for time and execution counts
using the —p option and the standard Unix profiler gprof. Just add the —p option when compiling
and linking the program:

ocamlopt -o myprog -p other-options files
./myprog
gprof myprog

Caml function names in the output of gprof have the following format:
Module-name_function-name_unique-number

Other functions shown are either parts of the Caml run-time system or external C functions linked
with the program.

The output of gprof is described in the Unix manual page for gprof (1). It generally consists
of two parts: a “flat” profile showing the time spent in each function and the number of invocation
of each function, and a “hierarchical” profile based on the call graph. Currently, only the Intel
x86/Linux and Alpha/Digital Unix ports of ocamlopt support the two profiles. On other platforms,
gprof will report only the “flat” profile with just time information. When reading the output of
gprof, keep in mind that the accumulated times computed by gprof are based on heuristics and
may not be exact.

220

Chapter 18

Interfacing C with Objective Caml

This chapter describes how user-defined primitives, written in C, can be linked with Caml code
and called from Caml functions.

18.1 Overview and compilation information

18.1.1 Declaring primitives

User primitives are declared in an implementation file or struct...end module expression using
the external keyword:

external name : type = C-function-name

This defines the value name name as a function with type type that executes by calling the given C
function. For instance, here is how the input primitive is declared in the standard library module
Pervasives:

external input : in_channel -> string -> int -> int -> int
= "input"

Primitives with several arguments are always curried. The C function does not necessarily have
the same name as the ML function.

External functions thus defined can be specified in interface files or sig. .. end signatures either
as regular values

val name : type
thus hiding their implementation as a C function, or explicitly as “manifest” external functions
external name : type = C-function-name

The latter is slightly more efficient, as it allows clients of the module to call directly the C function
instead of going through the corresponding Caml function.

The arity (number of arguments) of a primitive is automatically determined from its Caml type
in the external declaration, by counting the number of function arrows in the type. For instance,
input above has arity 4, and the input C function is called with four arguments. Similarly,

221

222

external input2 : in_channel * string * int * int -> int = "input2"

has arity 1, and the input2 C function receives one argument (which is a quadruple of Caml values).
Type abbreviations are not expanded when determining the arity of a primitive. For instance,

type int_endo = int -> int
external f : int_endo -> int_endo = "f"
external g : (int -> int) -> (int -> int) = "f"

f has arity 1, but g has arity 2. This allows a primitive to return a functional value (as in the £
example above): just remember to name the functional return type in a type abbreviation.

18.1.2 Implementing primitives

User primitives with arity n < 5 are implemented by C functions that take n arguments of type
value, and return a result of type value. The type value is the type of the representations for
Caml values. It encodes objects of several base types (integers, floating-point numbers, strings,

..), as well as Caml data structures. The type value and the associated conversion functions
and macros are described in details below. For instance, here is the declaration for the C function
implementing the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)

{

}

When the primitive function is applied in a Caml program, the C function is called with the values
of the expressions to which the primitive is applied as arguments. The value returned by the
function is passed back to the Caml program as the result of the function application.

User primitives with arity greater than 5 should be implemented by two C functions. The first
function, to be used in conjunction with the bytecode compiler ocamlc, receives two arguments:
a pointer to an array of Caml values (the values for the arguments), and an integer which is the
number of arguments provided. The other function, to be used in conjunction with the native-code
compiler ocamlopt, takes its arguments directly. For instance, here are the two C functions for the
7T-argument primitive Nat.add_nat:

CAMLprim value add_nat_native(value natl, value ofsl, value lenl,
value nat2, value ofs2, value len2,
value carry_in)

3
CAMLprim value add_nat_bytecode(value * argv, int argn)
{
return add_nat_native(argv[0], argv[l], argv[2], argv[3],
argv[4], argv[5], argv([6]);

Chapter 18. Interfacing C with Objective Caml 223

The names of the two C functions must be given in the primitive declaration, as follows:

external name : type =
bytecode-C-function-name native-code-C-function-name

For instance, in the case of add_nat, the declaration is:

external add_nat: nat -> int -> int -> nat -> int -> int -> int -> int
= "add_nat_bytecode" "add_nat_native"

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the
arguments to extract C values from the given Caml values, and encoding the return value as a
Caml value; on the other hand, actually computing the result from the arguments. Except for very
simple primitives, it is often preferable to have two distinct C functions to implement these two
tasks. The first function actually implements the primitive, taking native C values as arguments
and returning a native C value. The second function, often called the “stub code”, is a simple
wrapper around the first function that converts its arguments from Caml values to C values, call
the first function, and convert the returned C value to Caml value. For instance, here is the stub
code for the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
return Val_long(getblock((struct channel *) channel,
&Byte (buffer, Long_val(offset)),
Long_val(length)));
b

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be
described later. The CAMLprim macro expands to the required compiler directives to ensure that
the function following it is exported and accessible from Caml.) The hard work is performed by
the function getblock, which is declared as:

long getblock(struct channel * channel, char * p, long n)

{
}
To write C code that operates on Objective Caml values, the following include files are provided:
Include file Provides
caml/mlvalues.h | definition of the value type, and conversion macros
caml/alloc.h allocation functions (to create structured Caml objects)
caml/memory.h miscellaneous memory-related functions and macros (for GC interface,
in-place modification of structures, etc).
caml/fail.h functions for raising exceptions (see section [[8.4.5)
caml/callback.h | callback from C to Caml (see section [[8.7).
caml/custom.h operations on custom blocks (see section [[8.9).
caml/intext.h operations for writing user-defined serialization and deserialization func-
tions for custom blocks (see section [[8.9).

These files reside in the caml/ subdirectory of the Objective Caml standard library directory
(usually /usr/local/lib/ocaml).

224

18.1.3 Statically linking C code with Caml code

The Objective Caml runtime system comprises three main parts: the bytecode interpreter, the
memory manager, and a set of C functions that implement the primitive operations. Some bytecode
instructions are provided to call these C functions, designated by their offset in a table of functions
(the table of primitives).

In the default mode, the Caml linker produces bytecode for the standard runtime system, with
a standard set of primitives. References to primitives that are not in this standard set result in
the “unavailable C primitive” error. (Unless dynamic loading of C libraries is supported — see
section [[8.1.4 below.)

In the “custom runtime” mode, the Caml linker scans the object files and determines the set
of required primitives. Then, it builds a suitable runtime system, by calling the native code linker
with:

e the table of the required primitives;

e a library that provides the bytecode interpreter, the memory manager, and the standard
primitives;

e libraries and object code files (.o files) mentioned on the command line for the Caml linker,
that provide implementations for the user’s primitives.

This builds a runtime system with the required primitives. The Caml linker generates bytecode for
this custom runtime system. The bytecode is appended to the end of the custom runtime system,
so that it will be automatically executed when the output file (custom runtime + bytecode) is
launched.

To link in “custom runtime” mode, execute the ocamlc command with:

e the —custom option;
e the names of the desired Caml object files (.cmo and .cma files) ;

e the names of the C object files and libraries (.o and .a files) that implement the required
primitives. Under Unix and Windows, a library named libname.a residing in one of the
standard library directories can also be specified as -cclib -lname.

If you are using the native-code compiler ocamlopt, the -custom flag is not needed, as the
final linking phase of ocamlopt always builds a standalone executable. To build a mixed Caml/C
executable, execute the ocamlopt command with:

e the names of the desired Caml native object files (.cmx and .cmxa files);

e the names of the C object files and libraries (.o, .a, .so or .d1l1 files) that implement the
required primitives.

Starting with OCaml 3.00, it is possible to record the -custom option as well as the names of
C libraries in a Caml library file .cma or .cmxa. For instance, consider a Caml library mylib.cma,
built from the Caml object files a.cmo and b.cmo, which reference C code in libmylib.a. If the
library is built as follows:

Chapter 18. Interfacing C with Objective Caml 225

ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -1mylib
users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -custom and -cclib -1lmylib options, achieving the
same effect as

ocamlc -o myprog -custom a.cmo b.cmo ... -cclib -1mylib

The alternative, of course, is to build the library without extra options:
ocamlc -a -o mylib.cma a.cmo b.cmo

and then ask users to provide the —custom and -cclib -1mylib options themselves at link-time:
ocamlc -o myprog -custom mylib.cma ... -cclib -1lmylib

The former alternative is more convenient for the final users of the library, however.

18.1.4 Dynamically linking C code with Caml code

Starting with OCaml 3.03, an alternative to static linking of C code using the -custom code is
provided. In this mode, the Caml linker generates a pure bytecode executable (no embedded
custom runtime system) that simply records the names of dynamically-loaded libraries containing
the C code. The standard Caml runtime system ocamlrun then loads dynamically these libraries,
and resolves references to the required primitives, before executing the bytecode.

This facility is currently supported and known to work well under Linux and Windows (the
native Windows port). It is supported, but not fully tested yet, under FreeBSD, Tru64, Solaris and
Irix. It is not supported yet under other Unixes, Cygwin for Windows, and MacOS.

To dynamically link C code with Caml code, the C code must first be compiled into a shared
library (under Unix) or DLL (under Windows). This involves 1- compiling the C files with appro-
priate C compiler flags for producing position-independent code, and 2- building a shared library
from the resulting object files. The resulting shared library or DLL file must be installed in a place
where ocamlrun can find it later at program start-up time (see section [[0.J). Finally (step 3),
execute the ocamlc command with

e the names of the desired Caml object files (.cmo and .cma files) ;

e the names of the C shared libraries (.so or .d11 files) that implement the required primitives.
Under Unix and Windows, a library named d11lname.so (respectively, .d11) residing in one
of the standard library directories can also be specified as -~d11ib -1name.

Do not set the —custom flag, otherwise you’re back to static linking as described in section [8.1.3.
Under Unix, the ocamlmklib tool (see section [[8.10) automates steps 2 and 3.

As in the case of static linking, it is possible (and recommended) to record the names of C
libraries in a Caml .cmo library archive. Consider again a Caml library mylib.cma, built from the
Caml object files a.cmo and b.cmo, which reference C code in d11lmylib.so. If the library is built
as follows:

226

ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -1mylib

users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -d11ib -1mylib option, achieving the same effect as
ocamlc -o myprog a.cmo b.cmo ... —-dllib -1lmylib

Using this mechanism, users of the library mylib.cma do not need to known that it references C
code, nor whether this C code must be statically linked (using -custom) or dynamically linked.

18.1.5 Choosing between static linking and dynamic linking

After having described two different ways of linking C code with Caml code, we now review the
pros and cons of each, to help developers of mixed Caml/C libraries decide.

The main advantage of dynamic linking is that it preserves the platform-independence of byte-
code executables. That is, the bytecode executable contains no machine code, and can therefore
be compiled on platform A and executed on other platforms B, C, ..., as long as the required
shared libraries are available on all these platforms. In contrast, executables generated by ocamlc
-custom run only on the platform on which they were created, because they embark a custom-
tailored runtime system specific to that platform. In addition, dynamic linking results in smaller
executables.

Another advantage of dynamic linking is that the final users of the library do not need to have
a C compiler, C linker, and C runtime libraries installed on their machines. This is no big deal
under Unix and Cygwin, but many Windows users are reluctant to install Microsoft Visual C just
to be able to do ocamlc -custom.

There are two drawbacks to dynamic linking. The first is that the resulting executable is not
stand-alone: it requires the shared libraries, as well as ocamlrun, to be installed on the machine
executing the code. If you wish to distribute a stand-alone executable, it is better to link it statically,
using ocamlc -custom -ccopt -static or ocamlopt -ccopt -static. Dynamic linking also
raises the “DLL hell” problem: some care must be taken to ensure that the right versions of the
shared libraries are found at start-up time.

The second drawback of dynamic linking is that it complicates the construction of the library.
The C compiler and linker flags to compile to position-independent code and build a shared library
vary wildly between different Unix systems. Also, dynamic linking is not supported on all Unix
systems, requiring a fall-back case to static linking in the Makefile for the library. The ocamlmklib
command (see section [[8.10) tries to hide some of these system dependencies.

In conclusion: dynamic linking is highly recommended under the native Windows port, because
there are no portability problems and it is much more convenient for the end users. Under Unix,
dynamic linking should be considered for mature, frequently used libraries because it enhances
platform-independence of bytecode executables. For new or rarely-used libraries, static linking is
much simpler to set up in a portable way.

Chapter 18. Interfacing C with Objective Caml 227

18.1.6 Building standalone custom runtime systems

It is sometimes inconvenient to build a custom runtime system each time Caml code is linked with
C libraries, like ocamlc -custom does. For one thing, the building of the runtime system is slow on
some systems (that have bad linkers or slow remote file systems); for another thing, the platform-
independence of bytecode files is lost, forcing to perform one ocamlc -custom link per platform of
interest.

An alternative to ocamlc -custom is to build separately a custom runtime system integrating
the desired C libraries, then generate “pure” bytecode executables (not containing their own run-
time system) that can run on this custom runtime. This is achieved by the -make_runtime and
-use_runtime flags to ocamlc. For example, to build a custom runtime system integrating the C
parts of the “Unix” and “Threads” libraries, do:

ocamlc -make-runtime -o /home/me/ocamlunixrun unix.cma threads.cma
To generate a bytecode executable that runs on this runtime system, do:

ocamlc -use-runtime /home/me/ocamlunixrun -o myprog \
unix.cma threads.cma your .cmo and .cma files

The bytecode executable myprog can then be launched as wusual: myprog args or
/home/me/ocamlunixrun myprog args.

Notice that the bytecode libraries unix.cma and threads.cma must be given twice: when
building the runtime system (so that ocamlc knows which C primitives are required) and also
when building the bytecode executable (so that the bytecode from unix.cma and threads.cma is
actually linked in).

18.2 The value type

All Caml objects are represented by the C type value, defined in the include file caml/mlvalues.h,
along with macros to manipulate values of that type. An object of type value is either:

e an unboxed integer;

e a pointer to a block inside the heap (such as the blocks allocated through one of the alloc_x
functions below);

e a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or to
a C variable).

18.2.1 Integer values

Integer values encode 31-bit signed integers (63-bit on 64-bit architectures). They are unboxed
(unallocated).

228

18.2.2 Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each
block includes a header containing the size of the block (in words), and the tag of the block. The
tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates
a structured block, containing well-formed values, which is recursively traversed by the garbage
collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are
not scanned by the garbage collector. For the benefits of ad-hoc polymorphic primitives such as
equality and structured input-output, structured and raw blocks are further classified according to
their tags as follows:

Tag Contents of the block

0 to No_scan_tag — 1 | A structured block (an array of Caml objects). Each field is
a value.

Closure_tag A closure representing a functional value. The first word is

a pointer to a piece of code, the remaining words are value
containing the environment.

String_tag A character string.

Double_tag A double-precision floating-point number.

Double_array_tag An array or record of double-precision floating-point num-
bers.

Abstract_tag A block representing an abstract datatype.

Custom_tag A block representing an abstract datatype with user-defined

finalization, comparison, hashing, serialization and deserial-
ization functions atttached.

18.2.3 Pointers outside the heap

Any word-aligned pointer to an address outside the heap can be safely cast to and from the type
value. This includes pointers returned by malloc, and pointers to C variables (of size at least one
word) obtained with the & operator.

Caution: if a pointer returned by malloc is cast to the type value and returned to Caml,
explicit deallocation of the pointer using free is potentially dangerous, because the pointer may
still be accessible from the Caml world. Worse, the memory space deallocated by free can later be
reallocated as part of the Caml heap; the pointer, formerly pointing outside the Caml heap, now
points inside the Caml heap, and this can confuse the garbage collector. To avoid these problems,
it is preferable to wrap the pointer in a Caml block with tag Abstract_tag or Custom_tag.

18.3 Representation of Caml data types

This section describes how Caml data types are encoded in the value type.

Chapter 18. Interfacing C with Objective Caml 229

18.3.1 Atomic types

Caml type | Encoding

int Unboxed integer values.

char Unboxed integer values (ASCII code).
float Blocks with tag Double_tag.

string Blocks with tag String_tag.

int32 Blocks with tag Custom_tag.

int64 Blocks with tag Custom_tag.
nativeint | Blocks with tag Custom_tag.

18.3.2 Tuples and records

Tuples are represented by pointers to blocks, with tag 0.

Records are also represented by zero-tagged blocks. The ordering of labels in the record type
declaration determines the layout of the record fields: the value associated to the label declared
first is stored in field O of the block, the value associated to the label declared next goes in field 1,
and so on.

As an optimization, records whose fields all have static type float are represented as arrays of
floating-point numbers, with tag Double_array_tag. (See the section below on arrays.)

18.3.3 Arrays

Arrays of integers and pointers are represented like tuples, that is, as pointers to blocks tagged 0.
They are accessed with the Field macro for reading and the modify function for writing.

Arrays of floating-point numbers (type float array) have a special, unboxed, more efficient
representation. These arrays are represented by pointers to blocks with tag Double_array_tag.
They should be accessed with the Double_field and Store_double_field macros.

18.3.4 Concrete types

Constructed terms are represented either by unboxed integers (for constant constructors) or by
blocks whose tag encode the constructor (for non-constant constructors). The constant constructors
and the non-constant constructors for a given concrete type are numbered separately, starting from
0, in the order in which they appear in the concrete type declaration. Constant constructors
are represented by unboxed integers equal to the constructor number. Non-constant constructors
declared with a n-tuple as argument are represented by a block of size n, tagged with the constructor
number; the n fields contain the components of its tuple argument. Other non-constant constructors
are represented by a block of size 1, tagged with the constructor number; the field 0 contains the
value of the constructor argument. Example:

230

Constructed term | Representation

O Val_int (0)

false Val_int(0)

true Val_int (1)

(] Val_int(0)

h::t Block with size = 2 and tag = 0; first field con-
tains h, second field t

As a convenience, caml/mlvalues.h defines the macros Val_unit, Val_false and Val_true
to refer to (), false and true.

18.3.5 Objects

Objects are represented as zero-tagged blocks. The first field of the block refers to the object class
and associated method suite, in a format that cannot easily be exploited from C. The remaining
fields of the object contain the values of the instance variables of the object. Instance variables
are stored in the order in which they appear in the class definition (taking inherited classes into
account).

18.3.6 Variants

Like constructed terms, values of variant types are represented either as integers (for variants
without arguments), or as blocks (for variants with an argument). Unlike constructed terms,
variant constructors are not numbered starting from 0, but identified by a hash value (a Caml
integer), as computed by the C function hash_variant (declared in <caml/mlvalues.h>): the
hash value for a variant constructor named, say, VConstr is hash_variant ("VConstr").

The variant value ‘VConstr is represented by hash_variant ("VConstr"). The variant value
‘VConstr(v) is represented by a block of size 2 and tag 0, with field number 0 containing
hash_variant ("VConstr") and field number 1 containing v.

Unlike constructed values, variant values taking several arguments are not flattened. That is,
‘VConstr(w, v’) is represented by a block of size 2, whose field number 1 contains the representation
of the pair (v, v’), but not as a block of size 3 containing v and v’ in fields 1 and 2.

18.4 Operations on values
18.4.1 Kind tests
e Is_long(wv) is true if value v is an immediate integer, false otherwise

e Is_block(w) is true if value v is a pointer to a block, and false if it is an immediate integer.

18.4.2 Operations on integers
e Val_long(lD) returns the value encoding the long int Il
e Long_val(wv) returns the long int encoded in value w.

e Val_int (¢) returns the value encoding the int +.

Chapter 18. Interfacing C with Objective Caml 231

Int_val(w) returns the int encoded in value v.
Val_bool(x) returns the Caml boolean representing the truth value of the C integer z.
Bool_val(w) returns O if v is the Caml boolean false, 1 if v is true.

Val_true, Val_false represent the Caml booleans true and false.

18.4.3 Accessing blocks

Wosize_val (v) returns the size of the block v, in words, excluding the header.
Tag_val(wv) returns the tag of the block v.

Field(wv, n) returns the value contained in the n'® field of the structured block v. Fields are
numbered from 0 to Wosize_val(v) — 1.

Store_field(b, n, wv) stores the value v in the field number n of value b, which must be a
structured block.

Code_val (v) returns the code part of the closure v.
string_length(w) returns the length (number of characters) of the string v.

Byte(v, n) returns the n'® character of the string v, with type char. Characters are num-
bered from 0 to string_length(v) — 1.

Byte_u(v, n) returns the n' character of the string v, with type unsigned char. Characters
are numbered from 0 to string_length(v) — 1.

String_val(w) returns a pointer to the first byte of the string v, with type char *. This
pointer is a valid C string: there is a null character after the last character in the string.
However, Caml strings can contain embedded null characters, that will confuse the usual C
functions over strings.

Double_val(v) returns the floating-point number contained in value v, with type double.

Double_field(v, n) returns the n'" element of the array of floating-point numbers v (a
block tagged Double_array_tag).

Store_double_field(wv, n, d) stores the double precision floating-point number d in the
n'™ element of the array of floating-point numbers v.

Data_custom_val (v) returns a pointer to the data part of the custom block v. This pointer
has type void * and must be cast to the type of the data contained in the custom block.

Int32_val(v) returns the 32-bit integer contained in the int32 v.
Int64_val(v) returns the 64-bit integer contained in the int64 v.

Nativeint_val(w) returns the long integer contained in the nativeint v.

The expressions Field(v, n), Byte(v, n) and Byte_u(v, n) are valid l-values. Hence, they can
be assigned to, resulting in an in-place modification of value v. Assigning directly to Field(v, n)
must be done with care to avoid confusing the garbage collector (see below).

232

18.4.4 Allocating blocks

Simple interface

Atom(?) returns an “atom” (zero-sized block) with tag t. Zero-sized blocks are preallocated
outside of the heap. It is incorrect to try and allocate a zero-sized block using the functions
below. For instance, Atom(0) represents the empty array.

alloc(n, t) returns a fresh block of size n with tag t. If ¢ is less than No_scan_tag, then
the fields of the block are initialized with a valid value in order to satisfy the GC constraints.

alloc_tuple(n) returns a fresh block of size n words, with tag 0.

alloc_string(n) returns a string value of length n characters. The string initially contains
garbage.

copy_string(s) returns a string value containing a copy of the null-terminated C string s (a
char *).

copy_double (d) returns a floating-point value initialized with the double d.

copy_int32(4), copy_int64(:) and copy_nativeint (i) return a value of Caml type int32,
int64 and nativeint, respectively, initialized with the integer i.

alloc_array(f, a) allocates an array of values, calling function f over each element of the
input array a to transform it into a value. The array a is an array of pointers terminated
by the null pointer. The function f receives each pointer as argument, and returns a value.
The zero-tagged block returned by alloc_array(f, a) is filled with the values returned by
the successive calls to f. (This function must not be used to build an array of floating-point
numbers.)

copy_string_array(p) allocates an array of strings, copied from the pointer to a string array
p (a char *x).

Low-level interface

The following functions are slightly more efficient than alloc, but also much more difficult to use.

From the standpoint of the allocation functions, blocks are divided according to their size as
zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks
(with size greater than Max_young_wosize). The constant Max_young_wosize is declared in the
include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant
size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at
run-time, the size must be compared against Max_young_wosize to determine the correct allocation
procedure.

alloc_small(n, t) returns a fresh small block of size n < Max_young_wosize words, with
tag ¢. If this block is a structured block (i.e. if ¢ < No_scan_tag), then the fields of the block
(initially containing garbage) must be initialized with legal values (using direct assignment
to the fields of the block) before the next allocation.

Chapter 18. Interfacing C with Objective Caml 233

e alloc_shr(n, t) returns a fresh block of size n, with tag t. The size of the block can
be greater than Max_young_wosize. (It can also be smaller, but in this case it is more
efficient to call alloc_small instead of alloc_shr.) If this block is a structured block (i.e.
if ¢ < No_scan_tag), then the fields of the block (initially containing garbage) must be
initialized with legal values (using the initialize function described below) before the next
allocation.

18.4.5 Raising exceptions

Two functions are provided to raise two standard exceptions:

e failwith(s), where s is a null-terminated C string (with type char *), raises exception
Failure with argument s.

e invalid_argument(s), where s is a null-terminated C string (with type char *), raises ex-
ception Invalid_argument with argument s.

Raising arbitrary exceptions from C is more delicate: the exception identifier is dynamically
allocated by the Caml program, and therefore must be communicated to the C function using the
registration facility described below in section [8.7.3. Once the exception identifier is recovered in
C, the following functions actually raise the exception:

e raise_constant (id) raises the exception id with no argument;
e raise_with_arg(id, v) raises the exception id with the Caml value v as argument;

e raise_with_string(id, s), where s is a null-terminated C string, raises the exception id
with a copy of the C string s as argument.

18.5 Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some
cooperation from C code that manipulates heap-allocated blocks.

18.5.1 Simple interface
All the macros described in this section are declared in the memory.h header file.

Rule 1 A function that has parameters or local variables of type value must begin with a call to
one of the CAMLparam macros and return with CAMLreturn or CAMLreturnO.

There are six CAMLparam macros: CAMLparamO to CAMLparamb, which take zero to five arguments
respectively. If your function has fewer than 5 parameters of type value, use the corresponding
macros with these parameters as arguments. If your function has more than 5 parameters of type
value, use CAMLparamb with five of these parameters, and use one or more calls to the CAMLxparam
macros for the remaining parameters (CAMLxparaml to CAMLxparam5).

The macros CAMLreturn and CAMLreturnO are used to replace the C keyword return. Every
occurence of return x must be replaced by CAMLreturn (x), every occurence of return without
argument must be replaced by CAMLreturnO. If your C function is a procedure (i.e. if it returns
void), you must insert CAMLreturnO at the end (to replace C’s implicit return).

234

Note: some C compilers give bogus warnings about unused variables caml__dummy_xxx at each
use of CAMLparam and CAMLlocal. You should ignore them.
Example:

void foo (value v1, value v2, value v3)

{
CAMLparam3 (v1, v2, v3);

CAMLreturnO;
}

Note: if your function is a primitive with more than 5 arguments for use with the byte-code
runtime, its arguments are not values and must not be declared (they have types value * and
int).

Rule 2 Local variables of type value must be declared with one of the CAMLlocal macros. Arrays
of values are declared with CAMLlocalN.

The macros CAMLlocall to CAMLlocalb declare and initialize one to five local variables of type
value. The variable names are given as arguments to the macros. CAMLlocalN(z, n) declares and
initializes a local variable of type value [n]. You can use several calls to these macros if you have
more than 5 local variables. You can also use them in nested C blocks within the function.

Example:

value bar (value v1, value v2, value v3)
{

CAMLparam3 (v1, v2, v3);

CAMLlocall (result);

result = alloc (3, 0);

CAMLreturn (result);
}

Rule 3 Assignments to the fields of structured blocks must be done with the Store_field macro
(for normal blocks) or Store_double_field macro (for arrays and records of floating-point num-
bers). Other assignments must not use Store_field nor Store_double_field.

Store_field (b, m, w) stores the value v in the field number n of value b, which must be a
block (i.e. Is_block(b) must be true).
Example:

value bar (value vl, value v2, value v3)
{

CAMLparam3 (v1, v2, v3);

CAMLlocall (result);

result = alloc (3, 0);

Store_field (result, 0, vl);

Chapter 18. Interfacing C with Objective Caml 235

Store_field (result, 1, v2);
Store_field (result, 2, v3);
CAMLreturn (result);

}

Warning: The first argument of Store_field and Store_double_field must be a variable
declared by CAMLparam* or a parameter declared by CAMLlocal* to ensure that a garbage collection
triggered by the evaluation of the other arguments will not invalidate the first argument after it is
computed.

Rule 4 Global variables containing values must be registered with the garbage collector using the
register_global_root function.

Registration of a global variable v is achieved by calling register_global_root (&v) just before
a valid value is stored in v for the first time.

A registered global variable v can be un-registered by calling remove_global_root (&v).

Note: The CAML macros use identifiers (local variables, type identifiers, structure tags) that
start with caml__. Do not use any identifier starting with caml__ in your programs.

18.5.2 Low-level interface

We now give the GC rules corresponding to the low-level allocation functions alloc_small and
alloc_shr. You can ignore those rules if you stick to the simplified allocation function alloc.

Rule 5 After a structured block (a block with tag less than No_scan_tag) is allocated with the
low-level functions, all fields of this block must be filled with well-formed values before the next
allocation operation. If the block has been allocated with alloc_small, filling is performed by direct
assignment to the fields of the block:

Field(v, n) = wv,;
If the block has been allocated with alloc_shr, filling is performed through the initialize function:

initialize(&Field(v, n), v,);

The next allocation can trigger a garbage collection. The garbage collector assumes that all
structured blocks contain well-formed values. Newly created blocks contain random data, which
generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with
a constant value (e.g. Val_unit), then allocate, then modify the fields with the correct value (see
rule 6).

Rule 6 Direct assignment to a field of a block, as in
Field(v, n) = w;

1s safe only if v is a block newly allocated by alloc_small; that is, if no allocation took place
between the allocation of v and the assignment to the field. In all other cases, never assign directly.
If the block has just been allocated by alloc_shr, use initialize to assign a value to a field for
the first time:

236

initialize(&Field (v, n), w);

Otherwise, you are updating a field that previously contained a well-formed value; then, call the
modify function:

modify (&Field(v, n), w);

To illustrate the rules above, here is a C function that builds and returns a list containing the
two integers given as parameters. First, we write it using the simplified allocation functions:

value alloc_list_int(int il, int i2)
{

CAMLparamO ();

CAMLlocal2 (result, r);

r = alloc(2, 0); /* Allocate a cons cell */
Store_field(r, 0, Val_int(i2)); /* car = the integer i2 */
Store_field(r, 1, Val_int(0)); /* cdr = the empty list [] */
result = alloc(2, 0); /* Allocate the other cons cell */
Store_field(result, 0, Val_int(il)); /* car = the integer il */
Store_field(result, 1, r); /* cdr = the first cons cell */

CAMLreturn (result);
}

Here, the registering of result is not strictly needed, because no allocation takes place after it gets
its value, but it’s easier and safer to simply register all the local variables that have type value.

Here is the same function written using the low-level allocation functions. We notice that the
cons cells are small blocks and can be allocated with alloc_small, and filled by direct assignments
on their fields.

value alloc_list_int(int il, int i2)
{

CAMLparamO ();

CAMLlocal2 (result, r);

r = alloc_small(2, 0); /* Allocate a cons cell */
Field(r, 0) = Val_int(i2); /* car = the integer i2 */
Field(r, 1) = Val_int(0); /* cdr = the empty list [] */
result = alloc_small(2, 0); /* Allocate the other cons cell */
Field(result, 0) = Val_int(il); /* car = the integer il */
Field(result, 1) = r; /* cdr = the first cons cell */
CAMLreturn (result);

¥

In the two examples above, the list is built bottom-up. Here is an alternate way, that proceeds
top-down. It is less efficient, but illustrates the use of modify.

Chapter 18. Interfacing C with Objective Caml 237

value alloc_list_int(int i1, int i2)

{
CAMLparamO ();
CAMLlocal2 (tail, r);
r = alloc_small(2, 0); /* Allocate a cons cell */
Field(r, 0) = Val_int(il); /* car = the integer il x/
Field(r, 1) = Val_int(0); /* A dummy value
tail = alloc_small(2, 0); /* Allocate the other cons cell */
Field(tail, 0) = Val_int(i2); /* car = the integer i2 */
Field(tail, 1) = Val_int(0); /* cdr = the empty list [] */
modify(&Field(r, 1), tail); /* cdr of the result = tail */
return r;

}

It would be incorrect to perform Field(r, 1) = tail directly, because the allocation of tail has
taken place since r was allocated. tail is not registered as a root because there is no allocation
between the assignment where it takes its value and the modify statement that uses the value.

18.6 A complete example

This section outlines how the functions from the Unix curses library can be made available to
Objective Caml programs. First of all, here is the interface curses.mli that declares the curses
primitives and data types:

type window (* The type "window" remains abstract *)
external initscr: unit -> window = "curses_initscr"

external endwin: unit -> unit = "curses_endwin"

external refresh: unit -> unit = "curses_refresh"

external wrefresh : window -> unit = "curses_wrefresh"

external newwin: int -> int -> int -> int -> window = "curses_newwin"
external mvwin: window -> int -> int -> unit = "curses_mvwin"

external addch: char -> unit = "curses_addch"

external mvwaddch: window -> int -> int -> char -> unit = "curses_mvwaddch"
external addstr: string -> unit = "curses_addstr"

external mvwaddstr: window -> int -> int -> string -> unit = "curses_mvwaddstr"

(* lots more omitted *)
To compile this interface:
ocamlc -c curses.mli

To implement these functions, we just have to provide the stub code; the core functions are
already implemented in the curses library. The stub code file, curses.o, looks like:

#include <curses.h>
#include <mlvalues.h>

238

value curses_initscr(value unit)
{
CAMLparaml (unit);
CAMLreturn ((value) initscr()); /* 0K to coerce directly from WINDOW * to
value since that’s a block created by malloc() */

value curses_wrefresh(value win)

{
CAMLparaml (win);
wrefresh((WINDOW *) win);
CAMLreturn (Val_unit);

}

value curses_newwin(value nlines, value ncols, value x0, value yO)

{
CAMLparam4 (nlines, ncols, x0, yO0);
CAMLreturn ((value) newwin(Int_val(nlines), Int_val(ncols),
Int_val(x0), Int_val(y0)));

value curses_addch(value c)

{
CAMLparaml (c);
addch(Int_val(c)); /* Characters are encoded like integers */
CAMLreturn (Val_unit);

}

value curses_addstr(value s)

{

CAMLparaml (s);

addstr(String_val(s));

CAMLreturn (Val_unit);
}
/* This goes on for pages. */

The file curses.c can be compiled with:

cc -c -I/usr/local/lib/ocaml curses.c

or, even simpler,

ocamlc -c curses.c

(When passed a .c file, the ocamlc command simply calls the C compiler on that file, with the
right -I option.)

Chapter 18. Interfacing C with Objective Caml 239

Now, here is a sample Caml program test.ml that uses the curses module:

open Curses

let main_window = initscr () in

let small_window = newwin 10 5 20 10 in
mvwaddstr main_window 10 2 "Hello";
mvwaddstr small_window 4 3 "world";
refresh();
for i = 1 to 100000 do () done;
endwin ()

To compile this program, run:
ocamlc -c test.ml
Finally, to link everything together:
ocamlc -custom -o test test.cmo curses.o —-cclib -lcurses

(On some machines, you may need to put -cclib -ltermcap or -cclib -lcurses -cclib
-ltermcap instead of —~cclib -lcurses.)

18.7 Advanced topic: callbacks from C to Caml

So far, we have described how to call C functions from Caml. In this section, we show how C
functions can call Caml functions, either as callbacks (Caml calls C which calls Caml), or because
the main program is written in C.

18.7.1 Applying Caml closures from C

C functions can apply Caml functional values (closures) to Caml values. The following functions
are provided to perform the applications:

e callback(f, a) applies the functional value fto the value a and return the value returned
by f.

e callback2(f, a, b) applies the functional value f (which is assumed to be a curried Caml
function with two arguments) to a and b.

e callback3(f, a, b, ¢) applies the functional value f (a curried Caml function with three
arguments) to a, b and c.

e callbackN(f, n, args) applies the functional value fto the n arguments contained in the array
of values args.

If the function f does not return, but raises an exception that escapes the scope of the application,
then this exception is propagated to the next enclosing Caml code, skipping over the C code. That
is, if a Caml function f calls a C function g that calls back a Caml function h that raises a stray
exception, then the execution of g is interrupted and the exception is propagated back into f.

240

If the C code wishes to catch exceptions escaping the Caml function, it can use the func-
tions callback_exn, callback2_exn, callback3_exn, callbackN_exn. These functions take the
same arguments as their non-_exn counterparts, but catch escaping exceptions and return them
to the C code. The return value v of the callback*_exn functions must be tested with the macro
Is_exception_result(v). If the macro returns “false”, no exception occured, and v is the value
returned by the Caml function. If Is_exception_result (v) returns “true”, an exception escaped,
and its value (the exception descriptor) can be recovered using Extract_exception(v).

18.7.2 Registering Caml closures for use in C functions

The main difficulty with the callback functions described above is obtaining a closure to the Caml
function to be called. For this purpose, Objective Caml provides a simple registration mechanism,
by which Caml code can register Caml functions under some global name, and then C code can
retrieve the corresponding closure by this global name.

On the Caml side, registration is performed by evaluating Callback.register n v. Here, n is
the global name (an arbitrary string) and v the Caml value. For instance:

let f x = print_string "f is applied to "; print_int n; print_newline()
let _ = Callback.register "test function" f

On the C side, a pointer to the value registered under name n is obtained by calling
caml_named_value(n). The returned pointer must then be dereferenced to recover the actual
Caml value. If no value is registered under the name n, the null pointer is returned. For example,
here is a C wrapper that calls the Caml function £ above:

void call_caml_f(int arg)
{
callback(*caml_named_value("test function"), Val_int(arg));

3

The pointer returned by caml_named_value is constant and can safely be cached in a C variable
to avoid repeated name lookups. On the other hand, the value pointed to can change during garbage
collection and must always be recomputed at the point of use. Here is a more efficient variant of
call_caml_f above that calls caml_named_value only once:

void call_caml_f(int arg)
{
static value * closure_f = NULL;
if (closure_f == NULL) {
/* First time around, look up by name */
closure_f = caml_named_value("test function");
}
callback(*closure_f, Val_int(arg));

Chapter 18. Interfacing C with Objective Caml 241

18.7.3 Registering Caml exceptions for use in C functions

The registration mechanism described above can also be used to communicate excep-
tion identifiers from Caml to C. The Caml code registers the exception by evaluating
Callback.register_exception n ezn, where n is an arbitrary name and exn is an exception
value of the exception to register. For example:

exception Error of string
let _ = Callback.register_exception "test exception" (Error "any string")

The C code can then recover the exception identifier using caml_named_value and pass it as first
argument to the functions raise_constant, raise_with_arg, and raise_with_string (described
in section [[8.4.7) to actually raise the exception. For example, here is a C function that raises the
Error exception with the given argument:

void raise_error(char * msg)

{

raise_with_string(*caml_named_value("test exception"), msg);

18.7.4 Main program in C

In normal operation, a mixed Caml/C program starts by executing the Caml initialization code,
which then may proceed to call C functions. We say that the main program is the Caml code. In
some applications, it is desirable that the C code plays the role of the main program, calling Caml
functions when needed. This can be achieved as follows:

e The C part of the program must provide a main function, which will override the default main
function provided by the Caml runtime system. Execution will start in the user-defined main
function just like for a regular C program.

e At some point, the C code must call caml_main(argv) to initialize the Caml code. The argv
argument is a C array of strings (type char **) which represents the command-line arguments,
as passed as second argument to main. The Caml array Sys.argv will be initialized from this
parameter. For the bytecode compiler, argv[0] and argv[1] are also consulted to find the
file containing the bytecode.

e The call to caml_main initializes the Caml runtime system, loads the bytecode (in the case of
the bytecode compiler), and executes the initialization code of the Caml program. Typically,
this initialization code registers callback functions using Callback.register. Once the Caml
initialization code is complete, control returns to the C code that called caml_main.

e The C code can then invoke Caml functions using the callback mechanism (see section [[8.7.1]).

18.7.5 Embedding the Caml code in the C code

The bytecode compiler in custom runtime mode (ocamlc -custom) normally appends the bytecode
to the executable file containing the custom runtime. This has two consequences. First, the final
linking step must be performed by ocamlc. Second, the Caml runtime library must be able to find

242

the name of the executable file from the command-line arguments. When using caml_main (argv)
as in section [[8.7.4, this means that argv[0] or argv[1] must contain the executable file name.

An alternative is to embed the bytecode in the C code. The -output-obj option to ocamlc
is provided for this purpose. It causes the ocamlc compiler to output a C object file (.o file)
containing the bytecode for the Caml part of the program, as well as a caml_startup function.
The C object file produced by ocamlc -output-obj can then be linked with C code using the
standard C compiler, or stored in a C library.

The caml_startup function must be called from the main C program in order to initialize the
Caml runtime and execute the Caml initialization code. Just like caml_main, it takes one argv
parameter containing the command-line parameters. Unlike caml_main, this argv parameter is
used only to initialize Sys.argv, but not for finding the name of the executable file.

The native-code compiler ocamlopt also supports the —output-obj option, causing it to output
a C object file containing the native code for all Caml modules on the command-line, as well as
the Caml startup code. Initialization is performed by calling caml_startup as in the case of the
bytecode compiler.

For the final linking phase, in addition to the object file produced by -output-obj, you will
have to provide the Objective Caml runtime library (1ibcamlrun.a for bytecode, libasmrun.a for
native-code), as well as all C libraries that are required by the Caml libraries used. For instance,
assume the Caml part of your program uses the Unix library. With ocamlc, you should do:

ocamlc -output-obj -o camlcode.o unix.cma other .cmo and .cma files
cc —o myprog C objects and libraries \
camlcode.o -L/usr/local/lib/ocaml -lunix -lcamlrun

With ocamlopt, you should do:

ocamlopt -output-obj -o camlcode.o unix.cmxa other .cmx and .cmxa files
cc -o myprog C objects and libraries \
camlcode.o -L/usr/local/lib/ocaml -lunix -lasmrun

Warning: On some ports, special options are required on the final linking phase that links to-
gether the object file produced by the —output-obj option and the remainder of the program. Those
options are shown in the configuration file config/Makefile generated during compilation of Ob-
jective Caml, as the variables BYTECCLINKOPTS (for object files produced by ocamlc -output-obj)
and NATIVECCLINKOPTS (for object files produced by ocamlopt -output-obj). Currently, the only
ports that require special attention are:

e Alpha under Digital Unix / Tru64 Unix with gcc: object files produced by ocamlc
-output-obj must be linked with the gcc options -Wl,-T,12000000 -W1,-D,14000000.
This is not necessary for object files produced by ocamlopt -output-obj.

e Windows NT: the object file produced by Objective Caml have been compiled with the /MT
flag, and therefore all other object files linked with it should also be compiled with /MT.

Chapter 18. Interfacing C with Objective Caml 243

18.8 Advanced example with callbacks

This section illustrates the callback facilities described in section [8.7. We are going to package
some Caml functions in such a way that they can be linked with C code and called from C just like
any C functions. The Caml functions are defined in the following mod.m1 Caml source:

“‘useful’’ Caml functions *)

(* File mod.ml -- some
let rec fibn = if n < 2 then 1 else fib(n-1) + fib(n-2)

let format_result n = Printf.sprintf "Result is: %d\n" n

(* Export those two functions to C *)

let
let

Callback.register "fib" fib
Callback.register "format_result" format_result

Here is the C stub code for calling these functions from C:

/* File modwrap.c -- wrappers around the Caml functions */

#include <stdio.h>
#include <string.h>
#include <caml/mlvalues.h>
#include <caml/callback.h>

int fib(int n)

{
static value * fib_closure = NULL;
if (fib_closure == NULL) fib_closure = caml_named_value("fib");
return Int_val(callback(*fib_closure, Val_int(n)));
}
char * format_result(int n)
{
static value * format_result_closure = NULL;
if (format_result_closure == NULL)
format_result_closure = caml_named_value("format_result");
return strdup(String_val(callback(*format_result_closure, Val_int(n))));
/* We copy the C string returned by String_val to the C heap
so that it remains valid after garbage collection. */
}

We now compile the Caml code to a C object file and put it in a C library along with the stub
code in modwrap.c and the Caml runtime system:

244

ocamlc -custom -output-obj -o modcaml.o mod.ml
ocamlc -c modwrap.c

cp /usr/local/lib/ocaml/libcamlrun.a mod.a

ar r mod.a modcaml.o modwrap.o

(One can also use ocamlopt -output-obj instead of ocamlc -custom -output-obj. In this case,
replace libcamlrun.a (the bytecode runtime library) by libasmrun.a (the native-code runtime
library).)

Now, we can use the two fonctions £ib and format_result in any C program, just like regular
C functions. Just remember to call caml_startup once before.

/* File main.c -- a sample client for the Caml functions */
#include <stdio.h>

int main(int argc, char ** argv)
{

int result;

/* Initialize Caml code */

caml_startup(argv) ;

/* Do some computation */

result = fib(10);

printf ("fib(10) = %s\n", format_result(result));
return O;

To build the whole program, just invoke the C compiler as follows:
cc -o prog main.c mod.a -lcurses

(On some machines, you may need to put ~1termcap or ~lcurses -ltermcap instead of ~lcurses.)

18.9 Advanced topic: custom blocks

Blocks with tag Custom_tag contain both arbitrary user data and a pointer to a C struct, with
type struct custom_operations, that associates user-provided finalization, comparison, hashing,
serialization and deserialization functions to this block.

18.9.1 The struct custom_operations

The struct custom_operations is defined in <caml/custom.h> and contains the following fields:

e char *identifier
A zero-terminated character string serving as an identifier for serialization and deserialization
operations.

Chapter 18. Interfacing C with Objective Caml 245

e void (*finalize) (value v)
The finalize field contains a pointer to a C function that is called when the block becomes
unreachable and is about to be reclaimed. The block is passed as first argument to the
function. The finalize field can also be NULL to indicate that no finalization function is
associated with the block. IMPORTANT NOTE: the v parameter of this function is of type
value, but it must not be declared using the CAMLparam macros.

e int (*compare) (value vl, value v2)

The compare field contains a pointer to a C function that is called whenever two custom blocks
are compared using Caml’s generic comparison operators (=, <>, <=, >=, <, > and compare).
The C function should return 0 if the data contained in the two blocks are structurally equal,
a negative integer if the data from the first block is less than the data from the second block,
and a positive integer if the data from the first block is greater than the data from the second
block. NOTE: You must use CAMLparam to declare v1 and v2 and CAMLreturn to return the
result.

The compare field can be set to custom_compare_default; this default comparison function
simply raises Failure.

e long (*hash)(value v)

The hash field contains a pointer to a C function that is called whenever Caml’s generic hash
operator (see module Hashtbl) is applied to a custom block. The C function can return an
arbitrary long integer representing the hash value of the data contained in the given custom
block. The hash value must be compatible with the compare function, in the sense that two
structurally equal data (that is, two custom blocks for which compare returns 0) must have
the same hash value. NOTE: You must use CAMLparam to declare v and CAMLreturn to return
the result.

The hash field can be set to custom_hash_default, in which case the custom block is ignored
during hash computation.

e void (*serialize)(value v, unsigned long * wsize_32, unsigned long * wsize_64)
The serialize field contains a pointer to a C function that is called whenever the cus-
tom block needs to be serialized (marshaled) using the Caml functions output_value or
Marshal.to_.... For a custom block, those functions first write the identifier of the block (as
given by the identifier field) to the output stream, then call the user-provided serialize
function. That function is responsible for writing the data contained in the custom block,
using the serialize_... functions defined in <caml/intext.h> and listed below. The user-
provided serialize function must then store in its wsize_32 and wsize_64 parameters the
sizes in bytes of the data part of the custom block on a 32-bit architecture and on a 64-bit
architecture, respectively. NOTE: You must use CAMLparam to declare v and CAMLreturn to
return the result.

The serialize field can be set to custom_serialize_default, in which case the Failure
exception is raised when attempting to serialize the custom block.

e unsigned long (*deserialize) (void * dst)
The deserialize field contains a pointer to a C function that is called whenever a custom
block with identifier identifier needs to be deserialized (un-marshaled) using the Caml

246

functions input_value or Marshal.from_.... This user-provided function is responsible
for reading back the data written by the serialize operation, using the deserialize_. ..
functions defined in <caml/intext.h> and listed below. It must then rebuild the data part
of the custom block and store it at the pointer given as the dst argument. Finally, it returns
the size in bytes of the data part of the custom block. This size must be identical to the
wsize_32 result of the serialize operation if the architecture is 32 bits, or wsize_64 if the
architecture is 64 bits.

The deserialize field can be set to custom_deserialize_default to indicate that deseri-
alization is not supported. In this case, do not register the struct custom_operations with
the deserializer using register_custom_operations (see below).

18.9.2 Allocating custom blocks

Custom blocks must be allocated via the alloc_custom function. alloc_custom(ops, size, used,
maz) returns a fresh custom block, with room for size bytes of user data, and whose associated
operations are given by ops (a pointer to a struct custom_operations, usually statically allocated
as a C global variable).

The two parameters used and mazx are used to control the speed of garbage collection when the
finalized object contains pointers to out-of-heap resources. Generally speaking, the Caml incre-
mental major collector adjusts its speed relative to the allocation rate of the program. The faster
the program allocates, the harder the GC works in order to reclaim quickly unreachable blocks and
avoid having large amount of “floating garbage” (unreferenced objects that the GC has not yet
collected).

Normally, the allocation rate is measured by counting the in-heap size of allocated blocks.
However, it often happens that finalized objects contain pointers to out-of-heap memory blocks
and other resources (such as file descriptors, X Windows bitmaps, etc.). For those blocks, the
in-heap size of blocks is not a good measure of the quantity of resources allocated by the program.

The two arguments used and mazx give the GC an idea of how much out-of-heap resources are
consumed by the finalized block being allocated: you give the amount of resources allocated to this
object as parameter used, and the maximum amount that you want to see in floating garbage as
parameter max. The units are arbitrary: the GC cares only about the ratio used/maz.

For instance, if you are allocating a finalized block holding an X Windows bitmap of w by
h pixels, and you’d rather not have more than 1 mega-pixels of unreclaimed bitmaps, specify
used = w * h and mazx = 1000000.

Another way to describe the effect of the used and maz parameters is in terms of full GC
cycles. If you allocate many custom blocks with used/maz = 1/N, the GC will then do one
full cycle (examining every object in the heap and calling finalization functions on those that are
unreachable) every N allocations. For instance, if used = 1 and maz = 1000, the GC will do one
full cycle at least every 1000 allocations of custom blocks.

If your finalized blocks contain no pointers to out-of-heap resources, or if the previous discussion
made little sense to you, just take used = 0 and max = 1. But if you later find that the finalization
functions are not called “often enough”, consider increasing the used/mazx ratio.

Chapter 18. Interfacing C with Objective Caml 247

18.9.3 Accessing custom blocks

The data part of a custom block v can be accessed via the pointer Data_custom_val(v). This
pointer has type void * and should be cast to the actual type of the data stored in the custom
block.

The contents of custom blocks are not scanned by the garbage collector, and must therefore not
contain any pointer inside the Caml heap. In other terms, never store a Caml value in a custom
block, and do not use Field, Store_field nor modify to access the data part of a custom block.
Conversely, any C data structure (not containing heap pointers) can be stored in a custom block.

18.9.4 Writing custom serialization and deserialization functions

The following functions, defined in <caml/intext.h>, are provided to write and read back the
contents of custom blocks in a portable way. Those functions handle endianness conversions when
e.g. data is written on a little-endian machine and read back on a big-endian machine.

Function Action

serialize_int_1 Write a 1-byte integer
serialize_int_2 Write a 2-byte integer
serialize_int_4 Write a 4-byte integer
serialize_int_8 Write a 8-byte integer

serialize_float_4 Write a 4-byte float
serialize_float_8 Write a 8-byte float

serialize_block_1 Write an array of 1-byte quantities
serialize_block_2 Write an array of 2-byte quantities
serialize_block_4 Write an array of 4-byte quantities
serialize_block_8 Write an array of 8-byte quantities

deserialize_uint_1 | Read an unsigned 1-byte integer

deserialize_sint_1 | Read a signed 1-byte integer

deserialize_uint_2 | Read an unsigned 2-byte integer

deserialize_sint_2 | Read a signed 2-byte integer

deserialize_uint_4 | Read an unsigned 4-byte integer

deserialize_sint_4 | Read a signed 4-byte integer

deserialize_uint_8 | Read an unsigned 8-byte integer

deserialize_sint_8 | Read a signed 8-byte integer

deserialize_float_4 | Read a 4-byte float

deserialize_float_8 | Read an 8-byte float

deserialize_block_1 | Read an array of 1-byte quantities

deserialize_block_2 | Read an array of 2-byte quantities

deserialize_block_4 | Read an array of 4-byte quantities

deserialize_block_8 | Read an array of 8-byte quantities

deserialize_error Signal an error during deserialization; input_value or
Marshal.from_... raise a Failure exception after cleaning
up their internal data structures

Serialization functions are attached to the custom blocks to which they apply. Obviously, dese-
rialization functions cannot be attached this way, since the custom block does not exist yet when

248

deserialization begins! Thus, the struct custom_operations that contain deserialization functions
must be registered with the deserializer in advance, using the register_custom_operations func-
tion declared in <caml/custom.h>. Deserialization proceeds by reading the identifier off the input
stream, allocating a custom block of the size specified in the input stream, searching the registered
struct custom_operation blocks for one with the same identifier, and calling its deserialize
function to fill the data part of the custom block.

18.9.5 Choosing identifiers

Identifiers in struct custom_operations must be chosen carefully, since they must identify
uniquely the data structure for serialization and deserialization operations. In particular, con-
sider including a version number in the identifier; this way, the format of the data can be changed
later, yet backward-compatible deserialisation functions can be provided.

Identifiers starting with _ (an underscore character) are reserved for the Objective Caml
runtime system; do not use them for your custom data. We recommend to use a URL
(http://mymachine.mydomain.com/mylibrary/version-number) or a Java-style package name
(com.mydomain.mymachine.mylibrary.version-number) as identifiers, to minimize the risk of
identifier collision.

18.9.6 Finalized blocks

Custom blocks generalize the finalized blocks that were present in Objective Caml prior to version
3.00. For backward compatibility, the format of custom blocks is compatible with that of finalized
blocks, and the alloc_final function is still available to allocate a custom block with a given
finalization function, but default comparison, hashing and serialization functions. alloc_final(n,
f> used, max) returns a fresh custom block of size n words, with finalization function f. The first
word is reserved for storing the custom operations; the other n-1 words are available for your data.
The two parameters used and mazx are used to control the speed of garbage collection, as described
for alloc_custom.

18.10 Building mixed C/Caml libraries: ocamlmklib

The ocamlmklib command facilitates the construction of libraries containing both Caml code and
C code, and usable both in static linking and dynamic linking modes.

Windows:

This command is available only under Cygwin, but not for the native Win32 port.

MacOS:
This command is not available.

The ocamlmklib command takes three kinds of arguments:
e Caml source files and object files (.cmo, .cmx, .ml) comprising the Caml part of the library;

e C object files (.o, .a) comprising the C part of the library;

Chapter 18. Interfacing C with Objective Caml 249

e Support libraries for the C part (-1[ib).
It generates the following outputs:

e A Caml bytecode library .cma incorporating the .cmo and .m1 Caml files given as arguments,
and automatically referencing the C library generated with the C object files.

e A Caml native-code library .cmxa incorporating the .cmx and .ml Caml files given as argu-
ments, and automatically referencing the C library generated with the C object files.

e If dynamic linking is supported on the target platform, a .so shared library built from the C
object files given as arguments, and automatically referencing the support libraries.

e A C static library .a built from the C object files.
In addition, the following options are recognized:

-cclib, -ccopt, -I, -1linkall
These options are passed as is to ocamlc or ocamlopt. See the documentation of these
commands.

-pthread, -rpath, -R, -W1,-rpath, -W1,-R
These options are passed as is to the C compiler. Refer to the documentation of the C
compiler.

-custom
Force the construction of a statically linked library only, even if dynamic linking is supported.

-failsafe
Fall back to building a statically linked library if a problem occurs while building the shared
library (e.g. some of the support libraries are not available as shared libraries).

-Ldir
Add dir to the search path for support libraries (-1[ib).

-ocamlc cmd
Use c¢md instead of ocamlc to call the bytecode compiler.

-ocamlopt cmd
Use c¢md instead of ocamlopt to call the native-code compiler.

-0 output
Set the name of the generated Caml library. ocamlmklib will generate output.cma and/or
output.cmxa. If not specified, defaults to a.

-oc outputc
Set the name of the generated C library. ocamlmklib will generate liboutputc.so (if shared
libraries are supported) and liboutputc.a. If not specified, defaults to the output name given
with -o.

250

Example Consider a Caml interface to the standard libz C library for reading and writing
compressed files. Assume this library resides in /usr/local/z1lib. This interface is composed of a
Caml part zip.cmo/zip.cmx and a C part zipstubs.o containing the stub code around the 1libz
entry points. The following command builds the Caml libraries zip.cma and zip.cmxa, as well as
the companion C libraries d11zip.so and libzip.a:

ocamlmklib -o zip zip.cmo zip.cmx zipstubs.o -1z -L/usr/local/zlib
If shared libraries are supported, this performs the following commands:

ocamlc -a -o zip.cma zip.cmo -dllib -1lzip \

-cclib -1zip -cclib -1z -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -cclib -1lzip \

-cclib -1zip -cclib -1z -ccopt -L/usr/local/zlib
gcc -shared -o dllzip.so zipstubs.o -1z -L/usr/local/zlib
ar rc libzip.a zipstubs.o

If shared libraries are not supported, the following commands are performed instead:

ocamlc -a -custom -o zip.cma zip.cmo -cclib -1lzip \
-cclib -1z -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -lzip \
-cclib -1z -ccopt -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Instead of building simultaneously the bytecode library, the native-code library and the C libraries,
ocamlmklib can be called three times to build each separately. Thus,

ocamlmklib -o zip zip.cmo -1z -L/usr/local/zlib
builds the bytecode library zip.cma, and

ocamlmklib -o zip zip.cmx -1z -L/usr/local/zlib
builds the native-code library zip.cmxa, and

ocamlmklib -o zip zipstubs.o -1z -L/usr/local/zlib

builds the C libraries d11zip.so and libzip.a. Notice that the support libraries (-1z) and the
corresponding options (-L/usr/local/zlib) must be given on all three invocations of ocamlmklib,
because they are needed at different times depending on whether shared libraries are supported.

Part 1V

The Objective Caml library

251

Chapter 19

The core library

This chapter describes the Objective Caml core library, which is composed of declarations for
built-in types and exceptions, plus the module Pervasives that provides basic operations on these
built-in types. The Pervasives module is special in two ways:

e It is automatically linked with the user’s object code files by the ocamlc command (chapter).

e It is automatically “opened” when a compilation starts, or when the toplevel system is
launched. Hence, it is possible to use unqualified identifiers to refer to the functions pro-
vided by the Pervasives module, without adding a open Pervasives directive.

Conventions

The declarations of the built-in types and the components of module Pervasives are printed one
by one in typewriter font, followed by a short comment. All library modules and the components
they provide are indexed at the end of this report.

19.1 Built-in types and predefined exceptions

The following built-in types and predefined exceptions are always defined in the compilation envi-
ronment, but are not part of any module. As a consequence, they can only be referred by their
short names.
Built-in types

type int

The type of integer numbers.

type char
The type of characters.

type string
The type of character strings.

253

254

type float
The type of floating-point numbers.

type bool = false | true
The type of booleans (truth values).

type unit = ()
The type of the unit value.

type exn

The type of exception values.

type ’a array

The type of arrays whose elements have type ’a.

type ’a list = [] | :: of ’a * ’a list

The type of lists whose elements have type ’a.

type ’a option = None | Some of ’a

The type of optional values of type ’a.

type (’a, ’b, ’c) format

The type of format strings. ’a is the type of the parameters of the format, ’c is the result
type for the printf-style function, and ’b is the type of the first argument given to \%a and
\%t printing functions (see module Printf[20.24]).

type ’a lazy_t
This type is used to implement the Lazy[20.15] module. It should not be used directly.

Predefined exceptions

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are
the location of the pattern-matching in the source code (file name, position of first
character, position of last character).

exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the
pattern-matching in the source code (file name, position of first character, position of last
character).

exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense.

exception Failure of string

Chapter 19. The core library 255

Exception raised by library functions to signal that they are undefined on the given
arguments.

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the
computation.

exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal
size. This often indicates infinite or excessively deep recursion in the user’s program. (Not
fully implemented by the native-code compiler; see section [[1.4.)

exception Sys_error of string

Exception raised by the input/output functions to report an operating system error.

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by division and remainder operations when their second argument is null.
(Not fully implemented by the native-code compiler; see section [[1.4.)

exception Sys_blocked_io

A special case of Sys_error raised when no I/0 is possible on a non-blocking I/O channel.

19.2 Module Pervasives : The initially opened module.

This module provides the basic operations over the built-in types (numbers, booleans, strings,
exceptions, references, lists, arrays, input-output channels, ...)

This module is automatically opened at the beginning of each compilation. All components of
this module can therefore be referred by their short name, without prefixing them by Pervasives.

Exceptions

val raise : exn -> ’a

Raise the given exception value

val invalid_arg : string -> ’a

Raise exception Invalid_argument with the given string.

val failwith : string -> ’a

256

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your
programs.

Comparisons

val (=) : ’a -> ’a -> bool

val

val

val

val

val

val

val

val

el = e2 tests for structural equality of el and e2. Mutable structures (e.g. references and
arrays) are equal if and only if their current contents are structurally equal, even if the two
mutable objects are not the same physical object. Equality between functional values may
raise Invalid_argument. Equality between cyclic data structures may not terminate.

(<>) : ’a -> ’a -> bool

Negation of Pervasives. (=) [[9.7].

() : ’a -> ’a -> bool

See Pervasives. (>=)[[9.2).

(>) : ’a -> ’a -> bool

See Pervasives. (>=) [[9.2].

(=) : ’a -> ’a -> bool

See Pervasives. (>=)[[9.7].

(>=) : ’a -> ’a -> bool

Structural ordering functions. These functions coincide with the usual orderings over
integers, characters, strings and floating-point numbers, and extend them to a total ordering
over all types. The ordering is compatible with (=). As in the case of (=), mutable
structures are compared by contents. Comparison between functional values may raise
Invalid_argument. Comparison between cyclic structures may not terminate.

compare : ’a -> ’a -> int

compare x y returns O if x=y, a negative integer if x<y, and a positive integer if x>y. The
same restrictions as for = apply. compare can be used as the comparison function required

by the Set.Make[P0.28.3] and Map.Make[R0.18.3] functors.

min : ’a -> ’a -> ’a

Return the smaller of the two arguments.

max : ’a -> ’a -> ’a

Return the greater of the two arguments.

Chapter 19. The core library 257

val (==) : ’a -> ’a -> bool
el == e2 tests for physical equality of el and e2. On integers and characters, physical
equality is identical to structural equality. On mutable structures, el == e2 is true if and
only if physical modification of el also affects e2. On non-mutable structures, the behavior
of (==) is implementation-dependent; however, it is guaranteed that el == e2 implies el =
e2.

val (!=) : ’a -> ’a -> bool

Negation of Pervasives. (==)[[9.2].

Boolean operations

val not : bool -> bool

The boolean negation.

val (&%) : bool -> bool -> bool

The boolean “and”. Evaluation is sequential, left-to-right: in el && e2, el is evaluated
first, and if it returns false, e2 is not evaluated at all.

val (&) : bool -> bool -> bool
Deprecated. Pervasives. (&&)[[9.2] should be used instead.

val (]]) : bool -> bool —> bool

The boolean “or”. Evaluation is sequential, left-to-right: in el || e2, el is evaluated first,
and if it returns true, e2 is not evaluated at all.

val or : bool -> bool -> bool
Deprecated. Pervasives. (| |)[[[9.2] should be used instead.

Integer arithmetic

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 23! (or
263). They do not fail on overflow.

val (=) : int -> int

Unary negation. You can also write —e instead of ~-e.

val succ : int -> int

succ x is x+1.

val pred : int -> int

pred x is x-1.

val (+) : int -> int -> int

258

Integer addition.

val (=) : int -> int -> int

Integer subtraction.

val (%) : int -> int -> int

Integer multiplication.

val (/) : int -> int -> int
Integer division. Raise Division_by_zero if the second argument is 0. Integer division
rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y >
0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover,

(x)/y=x/ (Cy)=-&xx/7y.

val mod : int -> int -> int
Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x
=(x/y) *y + x mod yand abs(x mod y) < abs(y). Ify = 0, x mod y raises
Division_by_zero. Notice that x mod y is negative if and only if x < 0.

val abs : int -> int

Return the absolute value of the argument.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations

val land : int -> int -> int

Bitwise logical and.

val lor : int -> int -> int

Bitwise logical or.

val 1lxor : int -> int -> int

Bitwise logical exclusive or.

val lnot : int -> int

Bitwise logical negation.

val 1sl : int -> int -> int

Chapter 19. The core library 259

n 1sl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize,
where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val 1lsr : int -> int -> int
n 1lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless
of the sign of n. The result is unspecified if m < 0 or m >= bitsize.

val asr : int -> int -> int
n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is
replicated. The result is unspecified if m < 0 or m >= bitsize.

Floating-point arithmetic

Caml’s floating-point numbers follow the IEEE 754 standard, using double precision (64 bits)
numbers. Floating-point operations never raise an exception on overflow, underflow, division by
zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /.
0.0, neg_infinity for -1.0 /. 0.0, and nan (“not a number”) for 0.0 /. 0.0. These special
numbers then propagate through floating-point computations as expected: for instance, 1.0 /.
infinity is 0.0, and any operation with nan as argument returns nan as result.

val ("-.) : float —> float

Unary negation. You can also write -.e instead of “-.e.

val (+.) : float -> float -> float
Floating-point addition

val (-.) : float -> float -> float

Floating-point subtraction

val (*.) : float -> float -> float

Floating-point multiplication

val (/.) : float -> float -> float

Floating-point division.

val (*%) : float -> float -> float

Exponentiation

val sqrt : float -> float

Square root

val exp : float -> float

Exponential.

val log : float -> float

260

Natural logarithm.

val loglO : float -> float
Base 10 logarithm.

val cos : float -> float
See Pervasives.atan2[[9.7].

val sin : float -> float
See Pervasives.atan2[[9.9].

val tan : float -> float
See Pervasives.atan2[[9.7].

val acos : float -> float
See Pervasives.atan2[[9.9].

val asin : float -> float
See Pervasives.atan2[[9.7].

val atan : float -> float
See Pervasives.atan2[[9.7].

val atan?2 : float -> float -> float

The usual trigonometric functions.

val cosh : float -> float
See Pervasives.tanh([[9.7].

val sinh : float -> float
See Pervasives.tanh[[9.7].

val tanh : float -> float

The usual hyperbolic trigonometric functions.

val ceil : float -> float
See Pervasives.floor[[9.9].

val floor : float -> float

Round the given float to an integer value. floor f returns the greatest integer value less
than or equal to £. ceil f returns the least integer value greater than or equal to £.

val abs_float : float -> float

Return the absolute value of the argument.

Chapter 19. The core library 261

val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned valueisa -. n
*. b, where n is the quotient a /. b rounded towards zero to an integer.

val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of £. When £ is zero, the
significant x and the exponent n of £ are equal to zero. When £ is non-zero, they are defined
byf = x *x. 2 *x nand 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x nreturns x *. 2 *x n.

val modf : float -> float *x float

modf f returns the pair of the fractional and integral part of f.

val float : int -> float

Same as Pervasives.float_of_int[[9.7].

val float_of_int : int -> float

Convert an integer to floating-point.

val truncate : float -> int

Same as Pervasives.int_of_float[[9.2].

val int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if it falls
outside the range of representable integers.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /.
0.0. Stands for “not a number”.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

262

The smallest positive float x such that 1.0 +. x <> 1.0.

type fpclass =
| FP_normal

Normal number, none of the below
| FP_subnormal
Number very close to 0.0, has reduced precision
| FP_zero
Number is 0.0 or -0.0
| FP_infinite
Number is positive or negative infinity
| FP_nan
Not a number: result of an undefined operation

The five classes of floating-point numbers, as determined by the
Pervasives.classify_float[[9.7] function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or
not a number.

String operations

More string operations are provided in module String[20.33].
val (°) : string -> string -> string

String concatenation.

Character operations

More character operations are provided in module Char[20.5].
val int_of_char : char -> int
Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0-255.

Chapter 19. The core library 263

Unit operations

val ignore : ’a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the
result of the side-effecting function f. It is equivalent to £ x; (), except that the latter
may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions

val string_of_bool : bool -> string

Return the string representation of a boolean.

val bool_of_string : string -> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the
string is not "true" or "false".

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string : string -> int

Convert the given string to an integer. The string is read in decimal (by default) or in
hexadecimal, octal or binary if the string begins with 0x, 0o or Ob respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer.

val string_of_float : float —-> string

Return the string representation of a floating-point number.

val float_of_string : string -> float

Convert the given string to a float. Raise Failure "float_of_string" if the given string is
not a valid representation of a float.

Pair operations

val fst : ’a *x ’b -> ’a

Return the first component of a pair.

val snd : ’a *x b -> ’b

Return the second component of a pair.

264

List operations

More list operations are provided in module List[R0.17].
val (@) : ’a list -> ’a list -> ’a list

List concatenation.

Input/output

type in_channel

The type of input channel.

type out_channel
The type of output channel.

val stdin : in_channel

The standard input for the process.

val stdout : out_channel

The standard output for the process.

val stderr : out_channel

The standard error ouput for the process.

Output functions on standard output

val print_char : char -> unit

Print a character on standard output.

val print_string : string -> unit

Print a string on standard output.

val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

val print_endline : string -> unit

Print a string, followed by a newline character, on standard output.

val print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used
to simulate line buffering of standard output.

Chapter 19. The core library 265

Output functions on standard error

val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

Input functions on standard input

val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character
is encountered. Return the string of all characters read, without the newline character at
the end.

val read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer.
Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

val read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a
floating-point number. The result is unspecified if the line read is not a valid representation
of a floating-point number.

General output functions

type open_flag =
| Open_rdonly

open for reading.

| Open_wronly

266

val

val

val

open for writing.
Open_append

open for appending: always write at end of file.
Open_creat

create the file if it does not exist.
Open_trunc

empty the file if it already exists.
Open_excl

fail if the file already exists.
Open_binary

open in binary mode (no conversion).
Open_text

open in text mode (may perform conversions).
Open_nonblock

open in non-blocking mode.

Opening modes for Pervasives.open_out_gen[[9.2] and Pervasives.open_in_gen|[[9.7].

open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positionned
at the beginning of the file. The file is truncated to zero length if it already exists. It is
created if it does not already exists. Raise Sys_error if the file could not be opened.

open_out_bin : string -> out_channel

Same as Pervasives.open_out[[9.2], but the file is opened in binary mode, so that no
translation takes place during writes. On operating systems that do not distinguish between
text mode and binary mode, this function behaves like Pervasives.open_out[[9.9].

open_out_gen :

open_flag list -> int -> string -> out_channel

val

val

Open the named file for writing, as above. The extra argument mode specify the opening
mode. The extra argument perm specifies the file permissions, in case the file must be
created. Pervasives.open_out[[[9.2] and Pervasives.open_out_bin[[9.9] are special cases
of this function.

flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on
that channel. Interactive programs must be careful about flushing standard output and
standard error at the right time.

flush_all : unit -> unit

Flush all opened output channels.

Chapter 19. The core library 267

val

val

val

val

val

val

val

val

val

val

val

output_char : out_channel -> char -> unit

Write the character on the given output channel.

output_string : out_channel -> string -> unit

Write the string on the given output channel.

output : out_channel -> string -> int -> int -> unit

output oc buf pos len writes len characters from string buf, starting at offset pos, to
the given output channel oc. Raise Invalid_argument "output" if pos and len do not
designate a valid substring of buf.

output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel.
The given integer is taken modulo 256.

output_binary_int : out_channel -> int -> unit

Write one integer in binary format on the given output channel. The only reliable way to
read it back is through the Pervasives.input_binary_int[[9.2] function. The format is
compatible across all machines for a given version of Objective Caml.

output_value : out_channel -> ’a -> unit

Write the representation of a structured value of any type to a channel. Circularities and
sharing inside the value are detected and preserved. The object can be read back, by the
function Pervasives.input_value[[9.2]. See the description of module Marshal|P0.19] for
more information. Pervasives.output_value[[[9.7] is equivalent to
Marshal.to_channel[P0.19] with an empty list of flags.

seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works
only for regular files. On files of other kinds (such as terminals, pipes and sockets), the
behavior is unspecified.

pos_out : out_channel -> int

Return the current writing position for the given channel.

out_channel_length : out_channel -> int

Return the total length (number of characters) of the given channel. This works only for
regular files. On files of other kinds, the result is meaningless.

close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a
Sys_error exception when they are applied to a closed output channel, except close_out
and flush, which do nothing when applied to an already closed channel.

set_binary_mode_out : out_channel -> bool -> unit

268

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take
place during output. set_binary_mode_out oc false sets the channel oc to text mode:
depending on the operating system, some translations may take place during output. For
instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has
no effect under operating systems that do not distinguish between text mode and binary
mode.

General input functions

val open_in : string -> in_channel

Open the named file for reading, and return a new input channel on that file, positionned at
the beginning of the file. Raise Sys_error if the file could not be opened.

val open_in_bin : string -> in_channel
Same as Pervasives.open_in[[9.7], but the file is opened in binary mode, so that no
translation takes place during reads. On operating systems that do not distinguish between
text mode and binary mode, this function behaves like Pervasives.open_in[[9.9].

val open_in_gen :
open_flag list -> int -> string -> in_channel
Open the named file for reading, as above. The extra arguments mode and perm specify the
opening mode and file permissions. Pervasives.open_in[[[9.9] and
Pervasives.open_in_bin[[[9.9] are special cases of this function.

val input_char : in_channel -> char
Read one character from the given input channel. Raise End_of_file if there are no more
characters to read.

val input_line : in_channel -> string
Read characters from the given input channel, until a newline character is encountered.
Return the string of all characters read, without the newline character at the end. Raise
End_of_file if the end of the file is reached at the beginning of line.

val input : in_channel -> string -> int -> int -> int
input ic buf pos len reads up to len characters from the given channel ic, storing them
in string buf, starting at character number pos. It returns the actual number of characters
read, between 0 and len (inclusive). A return value of 0 means that the end of file was
reached. A return value between 0 and len exclusive means that not all requested len
characters were read, either because no more characters were available at that time, or
because the implementation found it convenient to do a partial read; input must be called
again to read the remaining characters, if desired. (See also
Pervasives.really_input[[9.9] for reading exactly len characters.) Exception
Invalid_argument "input" is raised if pos and len do not designate a valid substring of
buf.

Chapter 19. The core library 269

val

val

val

val

val

val

val

val

val

really_input : in_channel -> string -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in
string buf, starting at character number pos. Raise End_of_file if the end of file is
reached before len characters have been read. Raise Invalid_argument "really_input" if
pos and len do not designate a valid substring of buf.

input_byte : in_channel -> int
Same as Pervasives.input_char[[9.7], but return the 8-bit integer representing the
character. Raise End_of_file if an end of file was reached.

input_binary_int : in_channel -> int

Read an integer encoded in binary format from the given input channel. See
Pervasives.output_binary_int|[[9.9]. Raise End_of_file if an end of file was reached
while reading the integer.

input_value : in_channel -> ’a

Read the representation of a structured value, as produced by
Pervasives.output_value[[[9.2], and return the corresponding value. This function is
identical to Marshal.from_channel[P0.19]; see the description of module Marshal[R0.19] for
more information, in particular concerning the lack of type safety.

seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works
only for regular files. On files of other kinds, the behavior is unspecified.

pos_in : in_channel -> int

Return the current reading position for the given channel.

in_channel_length : in_channel -> int

Return the total length (number of characters) of the given channel. This works only for
regular files. On files of other kinds, the result is meaningless.

close_in : in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied
to a closed input channel, except close_in, which does nothing when applied to an already
closed channel.

set_binary_mode_in : in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take
place during input. set_binary_mode_out ic false sets the channel ic to text mode:
depending on the operating system, some translations may take place during input. For
instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has
no effect under operating systems that do not distinguish between text mode and binary
mode.

270

Operations on large files

module LargeFile : sig end

[M9.2.1]

References

type ’a ref = {
mutable contents : ’a ;

}

The type of references (mutable indirection cells) containing a value of type ’a.

val ref : ’a -> ’a ref

Return a fresh reference containing the given value.

val (!) : ’a ref -> ’a

'r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : ’a ref -> ’a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r

Ir.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r

Ir,

Program termination

val exit : int -> ’a

.= succ

:= pred

Terminate the process, returning the given status code to the operating system: usually 0 to
indicate no errors, and a small positive integer to indicate failure. All opened output
channels are flushed. An implicit exit 0 is performed each time a program terminates
normally. An implicit exit 2 is performed if the program terminates early because of an

uncaught exception.

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions
registered with at_exit will be called when the program executes Pervasives.exit[[9.2],
or terminates, either normally or because of an uncaught exception. The functions are called
in “last in, first out” order: the function most recently added with at_exit is called first.

Chapter 19. The core library 271

19.2.1 Module Pervasives.LargeFile : Operations on large files.

module LargeFile : sig

This sub-module provides 64-bit variants of the channel functions that manipulate file positions
and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular
integers (type int), these alternate functions allow operating on files whose sizes are greater than
max_int.

val seek_out : Pervasives.out_channel -> int64 -> unit
val pos_out : Pervasives.out_channel -> int64

val out_channel_length : Pervasives.out_channel -> int64
val seek_in : Pervasives.in_channel -> int64 -> unit

val pos_in : Pervasives.in_channel -> int64

val in_channel_length : Pervasives.in_channel -> int64

end

272

Chapter 20

The standard library

This chapter describes the functions provided by the Objective Caml standard library. The modules
from the standard library are automatically linked with the user’s object code files by the ocamlc
command. Hence, these modules can be used in standalone programs without having to add any
.cmo file on the command line for the linking phase. Similarly, in interactive use, these globals can
be used in toplevel phrases without having to load any .cmo file in memory.

Unlike the Pervasive module from the core library, the modules from the standard library are
not automatically “opened” when a compilation starts, or when the toplevel system is launched.
Hence it is necessary to use qualified identifiers to refer to the functions provided by these modules,
or to add open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its signature are printed one by one in typewriter font, followed by a
short comment. All modules and the identifiers they export are indexed at the end of this report.

Overview

Here is a short listing, by theme, of the standard library modules.

273

274

Data structures:

Char p. R8I
String p. B44
Array p. R77
List p. B14
StdLabels p. B39
Sort p. B38
Hashtbl p. BO3
Random p. B31
Set p. B35
Map p. B19
0o p. B26
Stack p. B38
Queue p. B29
Buffer p. R8G
Lazy p. B12
Weak p. B50
Arithmetic:
Complex p. P82
Int32 p. BOG
Int64 p. BO9
Nativeint p. 23
Input/output:
Format
Marshal
Printf
Scanf
Digest
Parsing;:
Genlex p. B02
Lexing p.B13
Parsing p.B26
Stream p. B42

character operations

string operations

array operations

list operations

labelized versions of the above 3 modules
sorting and merging lists

hash tables and hash functions
pseudo-random number generator

sets over ordered types

association tables over ordered types
useful functions on objects

last-in first-out stacks

first-in first-out queues

string buffers that grow on demand
delayed evaluation

references that don’t prevent objects from being garbage-collected

Complex numbers

operations on 32-bit integers
operations on 64-bit integers
operations on platform-native integers

pretty printing with automatic indentation and line breaking
marshaling of data structures

formatting printing functions

formatted input functions

MD5 message digest

a generic lexer over streams

the run-time library for lexers generated by ocamllex
the run-time library for parsers generated by ocamlyacc
basic functions over streams

Chapter 20. The standard library 275

System interface:

Arg p. R7§ parsing of command line arguments

Callback p. registering Caml functions to be called from C
Filename p.P8Y operations on file names

Ge p. 9§ memory management control and statistics
Printexc p.B27 a catch-all exception handler

Sys p. B4f system interface

20.1 Module Arg : Parsing of command line arguments.

This module provides a general mechanism for extracting options and arguments from the command
line to the program.

Syntax of command lines: A keyword is a character string starting with a -. An option is a
keyword alone or followed by an argument. The types of keywords are: Unit, Set, Clear, String,
Int, Float, and Rest. Unit, Set and Clear keywords take no argument. String, Int, and Float
keywords take the following word on the command line as an argument. A Rest keyword takes the
remaining of the command line as (string) arguments. Arguments not preceded by a keyword are
called anonymous arguments.

Examples (cmd is assumed to be the command name):

e cmd -flag (a unit option)

e cnd -int 1 (an int option with argument 1)

e cmd -string foobar (a string option with argument "foobar")
e cnd -float 12.34 (a float option with argument 12.34)

e cmd a b ¢ (three anonymous arguments: "a", "b", and "c")

e cnd a b —— ¢ d (two anonymous arguments and a rest option with two arguments)

type spec =
| Unit of (unit -> unit)
Call the function with unit argument
| Set of bool Pervasives.ref
Set the reference to true
| Clear of bool Pervasives.ref
Set the reference to false
| String of (string -> unit)
Call the function with a string argument
| Int of (int -> unit)
Call the function with an int argument
| Float of (float —-> unit)

276

Call the function with a float argument
| Rest of (string -> unit)

Stop interpreting keywords and call the function with each remaining argument

The concrete type describing the behavior associated with a keyword.

val parse
(string * spec * string) list -> (string -> unit) -> string -> unit

Arg.parse speclist anonfun usage_msg parses the command line. speclist is a list of
triples (key, spec, doc). key is the option keyword, it must start with a ’-’ character.
spec gives the option type and the function to call when this option is found on the
command line. doc is a one-line description of this option. anonfun is called on anonymous
arguments. The functions in spec and anonfun are called in the same order as their
arguments appear on the command line.

If an error occurs, Arg.parse exits the program, after printing an error message as follows:

e The reason for the error: unknown option, invalid or missing argument, etc.
e usage_msg

e The list of options, each followed by the corresponding doc string.

For the user to be able to specify anonymous arguments starting with a -, include for
example ("-", String anonfun, doc) in speclist.

By default, parse recognizes two unit options, ~help and --help, which will display
usage_msg and the list of options, and exit the program. You can override this behaviour
by specifying your own -help and --help options in speclist.

val parse_argv :
string array ->
(string * spec * string) list -> (string -> unit) -> string -> unit

Arg.parse_argv args speclist anonfun usage_msg parses array args as if it were the
command line.

exception Bad of string

Functions in spec or anonfun can raise Arg.Bad with an error message to reject invalid
arguments.

val usage : (string * spec * string) list -> string -> unit

Arg.usage speclist usage_msg prints an error message including the list of valid options.
This is the same message that Arg.parse[P0.1]| prints in case of error. speclist and
usage_msg are the same as for Arg.parse.

val current : int Pervasives.ref

Position (in Sys.argv[20.34]) of the argument being processed. You can change this value,
e.g. to force Arg.parse[P0.1] to skip some arguments.

Chapter 20. The standard library 277

20.2 Module Array : Array operations.

val length : ’a array —> int

Return the length (number of elements) of the given array.

val get : ’a array -> int -> ’a
Array.get a n returns the element number n of array a. The first element has number 0.

The last element has number Array.length a - 1.

Raise Invalid_argument "Array.get" if n is outside the range 0 to (Array.length a -
1). You can also write a. (n) instead of Array.get a n.

val set : ’a array -> int -> ’a -> unit
Array.set a n x modifies array a in place, replacing element number n with x.

Raise Invalid_argument "Array.set" if n is outside the range 0 to Array.length a - 1.
You can also write a. (n) <- x instead of Array.set a n x.

val make : int -> ’a -> ’a array
Array.make n x returns a fresh array of length n, initialized with x. All the elements of
this new array are initially physically equal to x (in the sense of the == predicate).
Consequently, if x is mutable, it is shared among all elements of the array, and modifying x
through one of the array entries will modify all other entries at the same time.

Raise Invalid_argument if n < O or n > Sys.max_array_length. If the value of x is a
floating-point number, then the maximum size is only Sys.max_array_length / 2.

val create : int -> ’a -> ’a array

Deprecated. Array.create is an alias for Array.make[20.7)].

val init : int -> (int -> ’a) -> ’a array
Array.init n f returns a fresh array of length n, with element number i initialized to the

result of £ i. In other terms, Array.init n f tabulates the results of £ applied to the
integers 0 to n-1.

Raise Invalid_argument if n < 0 orn > Sys.max_array_length. If the return type of f is
float, then the maximum size is only Sys.max_array_length / 2.

val make_matrix : int -> int -> ’a -> ’a array array
Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays)
with first dimension dimx and second dimension dimy. All the elements of this new matrix
are initially physically equal to e. The element (x,y) of a matrix m is accessed with the
notation m. (x) . (y).

Raise Invalid_argument if dimx or dimy is negative or greater than
Sys.max_array_length. If the value of e is a floating-point number, then the maximum
size is only Sys.max_array_length / 2.

278

val

val

val

val

val

val

val

val

val

val

val

create_matrix : int -> int -> ’a -> ’a array array

Deprecated. Array.create_matrix is an alias for Array.make_matrix[20.9].

append : ’a array -> ’a array -> ’a array

Array.append vl v2 returns a fresh array containing the concatenation of the arrays vi
and v2.

concat : ’a array list -> ’a array

Same as Array.append, but concatenates a list of arrays.

sub : ’a array -> int -> int -> ’a array

Array.sub a start len returns a fresh array of length len, containing the elements
number start to start + len - 1 of array a.

Raise Invalid_argument "Array.sub" if start and len do not designate a valid subarray
of a; that is, if start < 0, or len < O, or start + len > Array.length a.

copy : ’a array -> ’a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

fill : ’a array -> int -> int -> ’a -> unit

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs
to ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray
of a.

blit : ’a array -> int -> ’a array -> int -> int -> unit
Array.blit vl ol v2 02 len copies len elements from array v1, starting at element

number o1, to array v2, starting at element number 02. It works correctly even if v1 and v2
are the same array, and the source and destination chunks overlap.

Raise Invalid_argument "Array.blit" if ol and len do not designate a valid subarray of
v1, or if 02 and len do not designate a valid subarray of v2.

to_list : ’a array -> ’a list

Array.to_list a returns the list of all the elements of a.

of _list : ’a list -> ’a array

Array.of_list 1 returns a fresh array containing the elements of 1.

iter : (’a -> unit) -> ’a array -> unit

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to £
a.(0); £ a.(1); ...; f a.(Array.length a - 1); Q.

map : (’a -> ’b) -> ’a array -> ’b array

Chapter 20. The standard library 279

Array.map f a applies function £ to all the elements of a, and builds an array with the
results returned by £: [| £ a.(0); £ a.(1); ...; f a.(Array.length a - 1) |[].

val iteri : (int -> ’a -> unit) -> ’a array -> unit
Same as Array.iter[20.2], but the function is applied to the index of the element as first
argument, and the element itself as second argument.

val mapi : (int -> ’a -> ’b) -> ’a array -> ’b array
Same as Array.map[R0.2], but the function is applied to the index of the element as first
argument, and the element itself as second argument.

val fold_left : (a -> ’b -> ’a) -> ’a -> ’b array -> ’a
Array.fold_left f x acomputesf (... (f (f x a.(0)) a.(1)) ...) a.(m-1),
where n is the length of the array a.

val fold_right : (a -> ’b -> ’b) -> ’a array -> ’b -> ’b
Array.fold_right f a x computes f a.(0) (f a.(1) (... (£ a.(@-1) %) ...)),
where n is the length of the array a.

Sorting

val sort : (’a -> ’a -> int) -> ’a array -> unit
Sort an array in increasing order according to a comparison function. The comparison
function must return 0 if its arguments compare as equal, a positive integer if the first is
greater, and a negative integer if the first is smaller (see below for a complete specification).
For example, Pervasives.compare[[9.7] is a suitable comparison function, provided there
are no floating-point NaN values in the data. After calling Array.sort, the array is sorted
in place in increasing order. Array.sort is guaranteed to run in constant heap space and
(at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison
function. The following must be true for all x, y, z in a :

e cmp x y>0ifand only if cmp y x < 0
o ifcmp x y > 0and cmp y z > 0 then cmp x z > 0

When Array.sort returns, a contains the same elements as before, reordered in such a way
that for all i and j valid indices of a :

e cmp a.(i) a.(j) > 0if and only ifi > j

val stable_sort : (a -> ’a -> int) -> ’a array -> unit

280

Same as Array.sort[20.2], but the sorting algorithm is stable (i.e. elements that compare
equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is
the length of the array. It is usually faster than the current implementation of

Array.sort[20.2].

val fast_sort : (’a -> ’a -> int) -> ’a array -> unit

Same as Array.sort[20.9] or Array.stable_sort[R0.9], whichever is faster on typical input.

20.3 Module Buffer : Extensible string buffers.

This module implements string buffers that automatically expand as necessary. It provides accu-
mulative concatenation of strings in quasi-linear time (instead of quadratic time when strings are
concatenated pairwise).

type t
The abstract type of buffers.

val create : int > t

create n returns a fresh buffer, initially empty. The n parameter is the initial size of the
internal string that holds the buffer contents. That string is automatically reallocated when
more than n characters are stored in the buffer, but shrinks back to n characters when
reset is called. For best performance, n should be of the same order of magnitude as the
number of characters that are expected to be stored in the buffer (for instance, 80 for a
buffer that holds one output line). Nothing bad will happen if the buffer grows beyond that
limit, however. In doubt, take n = 16 for instance. If n is not between 1 and
Sys.max_string_length[20.34], it will be clipped to that interval.

val contents : t -> string

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

val length : t -> int

Return the number of characters currently contained in the buffer.

val clear : t -> unit
Empty the buffer.

val reset : t -> unit

Empty the buffer and deallocate the internal string holding the buffer contents, replacing it
with the initial internal string of length n that was allocated by Buffer.create[P0.3] n. For
long-lived buffers that may have grown a lot, reset allows faster reclaimation of the space
used by the buffer.

Chapter 20. The standard library 281

val add_char : t -> char -> unit

add_char b c appends the character ¢ at the end of the buffer b.

val add_string : t -> string -> unit

add_string b s appends the string s at the end of the buffer b.

val add_substring : t -> string -> int -> int -> unit

add_substring b s ofs len takes len characters from offset ofs in string s and appends
them at the end of the buffer b.

val add_buffer : t -> t -> unit

add_buffer bl b2 appends the current contents of buffer b2 at the end of buffer bl. b2 is
not modified.

val add_channel : t -> Pervasives.in_channel -> int -> unit

add_channel b ic n reads exactly n character from the input channel ic and stores them
at the end of buffer b. Raise End_of_file if the channel contains fewer than n characters.

val output_buffer : Pervasives.out_channel -> t -> unit

output_buffer oc b writes the current contents of buffer b on the output channel oc.

20.4 Module Callback : Registering Caml values with the C run-
time.

This module allows Caml values to be registered with the C runtime under a symbolic name, so
that C code can later call back registered Caml functions, or raise registered Caml exceptions.

val register : string -> ’a -> unit

Callback.register n v registers the value v under the name n. C code can later retrieve a
handle to v by calling caml_named_value(n).

val register_exception : string -> exn —> unit

Callback.register_exception n exn registers the exception contained in the exception
value exn under the name n. C code can later retrieve a handle to the exception by calling
caml_named_value(n). The exception value thus obtained is suitable for passign as first
argument to raise_constant or raise_with_arg.

20.5 Module Char : Character operations.

val code : char -> int

282

Return the ASCII code of the argument.

val chr : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "Char.chr" if
the argument is outside the range 0-255.

val escaped : char -> string

Return a string representing the given character, with special characters escaped following
the lexical conventions of Objective Caml.

val lowercase : char -> char

Convert the given character to its equivalent lowercase character.

val uppercase : char -> char

Convert the given character to its equivalent uppercase character.

type t = char

An alias for the type of characters.

val compare : t -> t -> int

The comparison function for characters, with the same specification as
Pervasives.compare[[9.9]. Along with the type t, this function compare allows the module
Char to be passed as argument to the functors Set.Make[20.28.3] and Map.Make[20.18.3].

20.6 Module Complex : Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are repre-
sented by their real and imaginary parts (cartesian representation). Each part is represented by a
double-precision floating-point number (type float).

type t = {
re : float ;
im : float ;

The type of complex numbers. re is the real part and im the imaginary part.

val zero : t

The complex number O.

val one : t

The complex number 1.

val i : t

Chapter 20. The standard library 283

The complex number 1.

val neg : t > t

Unary negation.

val conj : t >t

Conjugate: given the complex x + i.y, returns x - i.y.

val add : t >t > t
Addition

val sub : t >t > t

Subtraction

val mul : t -=> t -> t

Multiplication

val inv : t > t

Multiplicative inverse (1/z).

val div : t => t > t
Division
val sqrt : t > ¢t

Square root. The result x + i.y is such that x > O or x = 0 and y >= 0. This function
has a discontinuity along the negative real axis.

val norm2 : t -> float

Norm squared: given x + i.y, returns x°2 + y~2.

val norm : t -> float

Norm: given x + i.y, returns sqrt(x~2 + y~2).

val arg : t —> float

Argument. The argument of a complex number is the angle in the complex plane between
the positive real axis and a line passing through zero and the number. This angle ranges
from -pi to pi. This function has a discontinuity along the negative real axis.

val polar : float -> float > t

polar norm arg returns the complex having norm norm and argument arg.

val exp : t > t

Exponentiation. exp z returns e to the z power.

val log : t >t

284

Natural logarithm (in base e).

val pow : t >t > ¢t

Power function. pow z1 z2 returns z1 to the z2 power.

20.7 Module Digest : MD5 message digest.

This module provides functions to compute 128-bit “digests” of arbitrary-length strings or files.
The digests are of cryptographic quality: it is very hard, given a digest, to forge a string having
that digest. The algorithm used is MD5.

type t = string
The type of digests: 16-character strings.

val string : string —> t

Return the digest of the given string.

val substring : string -> int -> int -> t
Digest.substring s ofs len returns the digest of the substring of s starting at character
number ofs and containing len characters.

val channel : Pervasives.in_channel -> int -> t

If len is nonnegative, Digest.channel ic len reads len characters from channel ic and
returns their digest, or raises End_of _file if end-of-file is reached before len characters are
read. If len is negative, Digest.channel ic len reads all characters from ic until
end-of-file is reached and return their digest.

val file : string -> t

Return the digest of the file whose name is given.

val output : Pervasives.out_channel -> t -> unit

Write a digest on the given output channel.

val input : Pervasives.in_channel -> t

Read a digest from the given input channel.

val to_hex : t -> string

Return the printable hexadecimal representation of the given digest.

Chapter 20. The standard library 285

20.8 Module Filename : Operations on file names.

val

val

val

val

val

val

val

val

val

val

val

current_dir_name : string

The conventional name for the current directory (e.g. . in Unix).

parent_dir_name : string

The conventional name for the parent of the current directory (e.g. .. in Unix).

concat : string -> string -> string

concat dir file returns a file name that designates file file in directory dir.

is_relative : string -> bool

Return true if the file name is relative to the current directory, false if it is absolute (i.e.
in Unix, starts with /).

is_implicit : string -> bool

Return true if the file name is relative and does not start with an explicit reference to the
current directory (./ or ../ in Unix), false if it starts with an explicit reference to the
root directory or the current directory.

check_suffix : string -> string -> bool

check_suffix name suff returns true if the filename name ends with the suffix suff.

chop_suffix : string -> string -> string

chop_suffix name suff removes the suffix suff from the filename name. The behavior is
undefined if name does not end with the suffix suff.

chop_extension : string -> string

Return the given file name without its extension. The extension is the shortest suffix
starting with a period, .xyz for instance.

Raise Invalid_argument if the given name does not contain a period.

basename : string -> string

Split a file name into directory name / base file name. concat (dirname name) (basename
name) returns a file name which is equivalent to name. Moreover, after setting the current
directory to dirname name (with Sys.chdir[20.34]), references to basename name (which is
a relative file name) designate the same file as name before the call to Sys.chdir[20.34].

dirname : string -> string
See Filename.basename[R0.§].

temp_file : string -> string -> string

286

temp_file prefix suffix returns the name of a fresh temporary file in the temporary
directory. The base name of the temporary file is formed by concatenating prefix, then a
suitably chosen integer number, then suffix. The temporary file is created empty, with
permissions 00600 (readable and writable only by the file owner). The file is guaranteed to
be different from any other file that existed when temp_file was called. Under Unix, the
temporary directory is /tmp by default; if set, the value of the environment variable TMPDIR
is used instead. Under Windows, the name of the temporary directory is the value of the
environment variable TEMP, or C:\temp by default. Under MacOS, the name of the
temporary directory is given by the environment variable TempFolder; if not set, temporary
files are created in the current directory.

val open_temp_file :
?mode:Pervasives.open_flag list ->
string —-> string -> string * Pervasives.out_channel

Same as Filename.temp_file[20.§], but returns both the name of a fresh temporary file,
and an output channel opened (atomically) on this file. This function is more secure than
temp_file: there is no risk that the temporary file will be modified (e.g. replaced by a
symbolic link) before the program opens it. The optional argument mode is a list of
additional flags to control the opening of the file. It can contain one or several of
Open_append, Open_binary, and Open_text. The default is [Open_text] (open in text
mode).

val quote : string -> string

Return a quoted version of a file name, suitable for use as one argument in a shell command
line, escaping all shell meta-characters.

20.9 Module Format : Pretty printing.

This module implements a pretty-printing facility to format text within “pretty-printing boxes”.
The pretty-printer breaks lines at specified break hints, and indents lines according to the box
structure.

Warning: the material output by the following functions is delayed in the pretty-printer queue
in order to compute the proper line breaking. Hence, you should not mix calls to the printing
functions of the basic I/O system with calls to the functions of this module: this could result in
some strange output seemingly unrelated with the evaluation order of printing commands.

You may consider this module as providing an extension to the printf facility to provide au-
tomatic line breaking. The addition of pretty-printing annotations to your regular printf formats
gives you fancy indentation and line breaks. Pretty-printing annotations are described below in the
documentation of the function Format.fprintf[20.9].

You may also use the explicit box management and printing functions provided by this module.
This style is more basic but more verbose than the fprintf concise formats.

For instance, the sequence open_box (); print_string "x ="; print_space ();
print_int 1; close_box () that prints x = 1 within a pretty-printing box, can be abbreviated
as printf "@[%s@ %i@]" "x =" 1, or even shorter printf "@[x =@ %i@]" 1.

Chapter 20. The standard library 287

Rule of thumb for casual users of this library:
e use simple boxes (as obtained by open_box 0);

e use simple break hints (as obtained by print_cut () that outputs a simple break hint, or
by print_space () that outputs a space indicating a break hint);

e once a box is opened, display its material with basic printing functions (e. g. print_int and
print_string);

e when the material for a box has been printed, call close_box () to close the box;

e at the end of your routine, evaluate print_newline () to close all remaining boxes and flush
the pretty-printer.

The behaviour of pretty-printing commands is unspecified if there is no opened pretty-printing
box. Each box opened via one of the open_ functions below must be closed using close_box for
proper formatting. Otherwise, some of the material printed in the boxes may not be output, or
may be formatted incorrectly.

In case of interactive use, the system closes all opened boxes and flushes all pending text (as
with the print_newline function) after each phrase. Each phrase is therefore executed in the
initial state of the pretty-printer.

Boxes

val open_box : int -> unit

open_box d opens a new pretty-printing box with offset d. This box is the general purpose
pretty-printing box. Material in this box is displayed “horizontal or vertical”: break hints
inside the box may lead to a new line, if there is no more room on the line to print the
remainder of the box, or if a new line may lead to a new indentation (demonstrating the
indentation of the box). When a new line is printed in the box, d is added to the current
indentation.

val close_box : unit -> unit

Closes the most recently opened pretty-printing box.

Formatting functions

val print_string : string -> unit

print_string str prints str in the current box.

val print_as : int -> string -> unit
print_as len str prints str in the current box. The pretty-printer formats str as if it
were of length len.

288

val

val

val

val

print_int : int -> unit

Prints an integer in the current box.

print_float : float -> unit

Prints a floating point number in the current box.

print_char : char -> unit

Prints a character in the current box.

print_bool : bool -> unit

Prints a boolean in the current box.

Break hints

val

val

val

val

val

val

val

print_space : unit -> unit
print_space () is used to separate items (typically to print a space between two words). It
indicates that the line may be split at this point. It either prints one space or splits the line.
It is equivalent to print_break 1 0.

print_cut : unit -> unit

print_cut () is used to mark a good break position. It indicates that the line may be split
at this point. It either prints nothing or splits the line. This allows line splitting at the
current point, without printing spaces or adding indentation. It is equivalent to
print_break O O.

print_break : int -> int -> unit

Inserts a break hint in a pretty-printing box. print_break nspaces offset indicates that
the line may be split (a newline character is printed) at this point, if the contents of the
current box does not fit on the current line. If the line is split at that point, offset is
added to the current indentation. If the line is not split, nspaces spaces are printed.

print_flush : unit -> unit

Flushes the pretty printer: all opened boxes are closed, and all pending text is displayed.

print_newline : unit -> unit

Equivalent to print_flush followed by a new line.

force_newline : unit -> unit

Forces a newline in the current box. Not the normal way of pretty-printing, you should
prefer break hints.

print_if_newline : unit -> unit

Executes the next formatting command if the preceding line has just been split. Otherwise,
ignore the next formatting command.

Chapter 20. The standard library 289

Margin

val set_margin : int -> unit
set_margin d sets the value of the right margin to d (in characters): this value is used to

detect line overflows that leads to split lines. Nothing happens if d is smaller than 2 or
bigger than 999999999.

val get_margin : unit -> int

Returns the position of the right margin.

Maximum indentation limit

val set_max_indent : int -> unit

set_max_indent d sets the value of the maximum indentation limit to d (in characters):
once this limit is reached, boxes are rejected to the left, if they do not fit on the current line.
Nothing happens if d is smaller than 2 or bigger than 999999999.

val get_max_indent : unit -> int

Return the value of the maximum indentation limit (in characters).

Formatting depth: maximum number of boxes allowed before ellipsis

val set_max_boxes : int -> unit

set_max_boxes max sets the maximum number of boxes simultaneously opened. Material
inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by
get_ellipsis_text ()). Nothing happens if max is not greater than 1.

val get_max_boxes : unit -> int

Returns the maximum number of boxes allowed before ellipsis.

val over_max_boxes : unit -> bool

Tests if the maximum number of boxes allowed have already been opened.

Advanced formatting

val open_hbox : unit -> unit

open_hbox () opens a new pretty-printing box. This box is “horizontal”: the line is not
split in this box (new lines may still occur inside boxes nested deeper).

val open_vbox : int -> unit

“vertical”: every

open_vbox d opens a new pretty-printing box with offset d. This box is
break hint inside this box leads to a new line. When a new line is printed in the box, 4 is

added to the current indentation.

290

val open_hvbox : int -> unit

open_hvbox d opens a new pretty-printing box with offset d. This box is
“horizontal-vertical”: it behaves as an “horizontal” box if it fits on a single line, otherwise it
behaves as a “vertical” box. When a new line is printed in the box, d is added to the
current indentation.

val open_hovbox : int -> unit

open_hovbox d opens a new pretty-printing box with offset d. This box is “horizontal or
vertical”: break hints inside this box may lead to a new line, if there is no more room on the
line to print the remainder of the box. When a new line is printed in the box, d is added to
the current indentation.

Tabulations

val open_tbox : unit -> unit

Opens a tabulation box.

val close_tbox : unit -> unit

Closes the most recently opened tabulation box.

val print_tbreak : int -> int -> unit

Break hint in a tabulation box. print_tbreak spaces offset moves the insertion point to
the next tabulation (spaces being added to this position). Nothing occurs if insertion point
is already on a tabulation mark. If there is no next tabulation on the line, then a newline is
printed and the insertion point moves to the first tabulation of the box. If a new line is
printed, offset is added to the current indentation.

val set_tab : unit -> unit

Sets a tabulation mark at the current insertion point.

val print_tab : unit -> unit

print_tab () is equivalent to print_tbreak (0,0).

Ellipsis

val set_ellipsis_text : string -> unit

Set the text of the ellipsis printed when too many boxes are opened (a single dot, ., by
default).

val get_ellipsis_text : unit -> string
Return the text of the ellipsis.

Chapter 20. The standard library 291

Tags

type tag = string

Tags are used to decorate printed entities for user’s defined purposes, e.g. setting font and giving
size indications for a display device, or marking delimitations of semantics entities (e.g. HTML or
TeX elements or terminal escape sequences).

By default, those tags do not influence line breaking calculation: the tag “markers” are not
considered as part of the printing material that drive line breaking (in other words, the length of
those strings is considered as zero for line breaking).

Thus, tag handling is in some sense transparent to pretty-printing and do not interfere with
usual pretty-printing. Hence, a single pretty printing routine can output both simple “verbatim”
material or richer decorated output depending on the treatment of tags. Default behavior of the
pretty printer engine is to consider tags as active, so that output is decorated. Otherwise, if
set_tags is set to false, the pretty printer engine just skips tags, and the output is regular.

When a tag has been opened (or closed), it is both and successively “printed” and “marked”.
Printing a tag means calling a formatter specific function with the name of the tag as argument: that
“tag printing” function can then print any regular material to the formatter (so that this material
is enqueued as usual in the formatter queue for further line-breaking computation). Marking a
tag means to output an arbitrary string (the “tag marker”), directly into the output device of the
formatter. Hence, the formatter specific “tag marking” function must return the tag marker string
associated to its tag argument. Being flushed directly into the output device of the formatter,
tag marker strings are not considered as part of the printing material that drive line breaking (in
other words, the length of the strings corresponding to tag markers is considered as zero for line
breaking). In addition, advanced users may take advantage of the specificity of tag markers to be
precisely output when the pretty printer has already decided where to break the lines, and precisely
when the queue is flushed into the output device.

In the spirit of HTML tags, the default tag marking functions output tags enclosed in ”<” and
”>”: hence, the opening marker of tag t is "<t>" and the closing marker "</t>".

Default tag printing functions just do nothing.

Tag marking and tag printing functions are user definable and can be set by calling
set_formatter_tag_functions.

val open_tag : tag —-> unit
open_tag t opens the tag named t; the print_open_tag function of the formatter is called

with t as argument; the tag marker mark_open_tag t will be flushed into the output device
of the formatter.

val close_tag : unit -> unit

close_tag () closes the most recently opened tag t. In addition, the print_close_tag
function of the formatter is called with t as argument. The marker mark_close_tag t will
be flushed into the output device of the formatter.

val set_tags : bool -> unit

set_tags b turns on or off the treatment of tags (default is on).

val set_print_tags : bool -> unit

292

val set_mark_tags : bool -> unit

set_print_tags b turns on or off the printing of tags, while set_mark_tags b turns on or
off the output of tag markers.

val get_print_tags : unit -> bool
val get_mark_tags : unit -> bool

Return the current status of tag printing and marking.

Redirecting formatter output

val set_formatter_out_channel : Pervasives.out_channel -> unit

Redirect the pretty-printer output to the given channel.

val set_formatter_output_functions
(string -> int -> int -> unit) -> (unit -> unit) -> unit
set_formatter_output_functions out flush redirects the pretty-printer output to the
functions out and flush.

The out function performs the pretty-printer output. It is called with a string s, a start
position p, and a number of characters n; it is supposed to output charactersptop + n -
1 of s. The flush function is called whenever the pretty-printer is flushed using
print_flush or print_newline.

val get_formatter_output_functions
unit -> (string -> int -> int -> unit) * (unit -> unit)

Return the current output functions of the pretty-printer.

Changing the meaning of printing tags

type formatter_tag_functions = {
mark_open_tag : tag -> string ;
mark_close_tag : tag —-> string ;
print_open_tag : tag —-> unit ;
print_close_tag : tag —-> unit ;
}
The tag handling functions specific to a formatter: mark versions are the “tag marking”
functions that associate a string marker to a tag in order for the pretty-printing engine to
flush those markers as 0 length tokens in the output device of the formatter. print versions
are the “tag printing” functions that can perform regular printing when a tag is closed or
opened.

val set_formatter_tag_functions : formatter_tag_functions -> unit

set_formatter_tag_functions tag_funs changes the meaning of opening and closing tags to
use the functions in tag_funs.

Chapter 20. The standard library 293

When opening a tag name t, the string t is passed to the opening tag marking function (the
mark_open_tag field of the record tag_funs), that must return the opening tag marker for that
name. When the next call to close_tag () happens, the tag name t is sent back to the closing
tag marking function (the mark_close_tag field of record tag_funs), that must return a closing
tag marker for that name.

The print_ field of the record contains the functions that are called at tag opening and tag
closing time, to output regular material in the pretty-printer queue.

val get_formatter_tag_functions : unit -> formatter_tag_functions

Return the current tag functions of the pretty-printer.

Changing the meaning of pretty printing (indentation, line breaking, and print-
ing material)

val set_all_formatter_output_functions :
out: (string -> int -> int -> unit) ->
flush: (unit -> unit) ->
newline: (unit -> unit) -> spaces:(int -> unit) -> unit

set_all_formatter_output_functions out flush outnewline outspace redirects the
pretty-printer output to the functions out and flush as described in
set_formatter_output_functions. In addition, the pretty-printer function that outputs a
newline is set to the function outnewline and the function that outputs indentation spaces
is set to the function outspace.

This way, you can change the meaning of indentation (which can be something else than just
printing space characters) and the meaning of new lines opening (which can be connected to
any other action needed by the application at hand). The two functions outspace and
outnewline are normally connected to out and flush: respective default values for
outspace and outnewline are out (String.make n ’ ’) O n and out "\n" 0 1.

val get_all_formatter_output_functions :
unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
Return the current output functions of the pretty-printer, including line breaking and
indentation functions.

Multiple formatted output

type formatter

Abstract data type corresponding to a pretty-printer (also called a formatter) and all its
machinery. Defining new pretty-printers permits the output of material in parallel on several
channels. Parameters of a pretty-printer are local to this pretty-printer: margin, maximum
indentation limit, maximum number of boxes simultaneously opened, ellipsis, and so on, are

294

val

val

val

val

val

val

val

specific to each pretty-printer and may be fixed independently. Given an output channel oc,
a new formatter writing to that channel is obtained by calling formatter_of_out_channel
oc. Alternatively, the make_formatter function allocates a new formatter with explicit
output and flushing functions (convenient to output material to strings for instance).

formatter_of_out_channel : Pervasives.out_channel -> formatter

formatter_of_out_channel oc returns a new formatter that writes to the corresponding
channel oc.

std_formatter : formatter

The standard formatter used by the formatting functions above. It is defined as
formatter_of_out_channel stdout.

err_formatter : formatter

A formatter to use with formatting functions below for output to standard error. It is
defined as formatter_of _out_channel stderr.

formatter_of_buffer : Buffer.t -> formatter

formatter_of_buffer b returns a new formatter writing to buffer b. As usual, the
formatter has to be flushed at the end of pretty printing, using pp_print_flush or
pp_print_newline, to display all the pending material.

stdbuf : Buffer.t

The string buffer in which str_formatter writes.

str_formatter : formatter

A formatter to use with formatting functions below for output to the stdbuf string buffer.
str_formatter is defined as formatter_of_buffer stdbuf.

flush_str_formatter : unit -> string

Returns the material printed with str_formatter, flushes the formatter and resets the
corresponding buffer.

val make_formatter :
(string -> int -> int -> unit) -> (unit -> unit) -> formatter

make_formatter out flush returns a new formatter that writes according to the output
function out, and the flushing function flush. Hence, a formatter to the out channel oc is
returned by make_formatter (output oc) (fun () -> flush oc).

Basic functions to use with formatters

val pp_open_hbox : formatter -> unit -> unit

val pp_open_vbox : formatter -> int -> unit

Chapter 20. The standard library

val pp_open_hvbox : formatter -> int -> unit

val pp_open_hovbox : formatter -> int -> unit

val pp_open_box : formatter —-> int -> unit

val pp_close_box : formatter -> unit -> unit

val pp_open_tag : formatter -> string -> unit

val pp_close_tag : formatter -> unit -> unit

val pp_print_string : formatter -> string -> unit
val pp_print_as : formatter -> int -> string -> unit
val pp_print_int : formatter -> int -> unit

val pp_print_float : formatter -> float -> unit

val pp_print_char : formatter -> char -> unit

val pp_print_bool : formatter -> bool -> unit

val pp_print_break : formatter -> int -> int -> unit
val pp_print_cut : formatter -> unit -> unit

val pp_print_space : formatter -> unit -> unit

val pp_force_newline : formatter -> unit -> unit
val pp_print_flush : formatter -> unit -> unit

val pp_print_newline : formatter -> unit -> unit
val pp_print_if_newline : formatter -> unit -> unit
val pp_open_tbox : formatter -> unit -> unit

val pp_close_tbox : formatter -> unit -> unit

val pp_print_tbreak : formatter -> int -> int -> unit
val pp_set_tab : formatter -> unit -> unit

val pp_print_tab : formatter -> unit -> unit

val pp_set_tags : formatter -> bool -> unit

val pp_set_print_tags : formatter -> bool -> unit
val pp_set_mark_tags : formatter -> bool -> unit
val pp_get_print_tags : formatter -> unit -> bool
val pp_get_mark_tags : formatter -> unit -> bool
val pp_set_margin : formatter -> int -> unit

val pp_get_margin : formatter -> unit -> int

val pp_set_max_indent : formatter -> int -> unit
val pp_get_max_indent : formatter -> unit -> int
val pp_set_max_boxes : formatter -> int -> unit

val pp_get_max_boxes : formatter -> unit -> int

val pp_over_max_boxes : formatter -> unit -> bool

val pp_set_ellipsis_text : formatter -> string -> unit

295

296

val pp_get_ellipsis_text : formatter -> unit -> string

val pp_set_formatter_out_channel
formatter -> Pervasives.out_channel -> unit

val pp_set_formatter_output_functions
formatter ->
(string -> int -> int -> unit) -> (unit -> unit) -> unit
val pp_get_formatter_output_functions
formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)

val pp_set_all_formatter_output_functions
formatter ->
out: (string -> int -> int -> unit) ->
flush: (unit -> unit) ->
newline: (unit -> unit) -> spaces:(int -> unit) -> unit

val pp_get_all_formatter_output_functions
formatter ->
unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
val pp_set_formatter_tag_functions
formatter -> formatter_tag_functions -> unit

val pp_get_formatter_tag_functions
formatter -> unit -> formatter_tag_functions

These functions are the basic ones: usual functions operating on the standard formatter are
defined via partial evaluation of these primitives. For instance, print_string is equal to
pp_print_string std_formatter.

printf like functions for pretty-printing.

val fprintf : formatter -> (’a, formatter, unit) format -> ’a

fprintf ff format argl ... argN formats the arguments argl to argN according to
the format string format, and outputs the resulting string on the formatter £f. The format
is a character string which contains three types of objects: plain characters and conversion
specifications as specified in the printf module, and pretty-printing indications. The
pretty-printing indication characters are introduced by a @ character, and their meanings
are:

e @[: open a pretty-printing box. The type and offset of the box may be optionally
specified with the following syntax: the < character, followed by an optional box type
indication, then an optional integer offset, and the closing > character. Box type is one
of h, v, hv, b, o